
 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 1 Dr.Venkateswarulu, Assoc Prof

UNIT I : Object oriented thinking :- Need for OOP paradigm, A way of viewing world –
Agents, responsibility, messages, methods, classes and instances, class hierarchies (Inheritance),
method binding, overriding and exceptions, summary of OOP concepts.

Java Basics :- History of Java, Java buzzwords, data types, variables, constants, scope and life
time of variables, operators, expressions, control statements, type conversion and casting, simple
java programs, concepts of classes, objects, arrays, strings, constructors, methods, access control,
this keyword, garbage collection, overloading methods and constructors, parameter passing,
BufferedReader class, Scanner class, StringTokenizer class, inner class.

Need for OOP paradigm
• The object oriented paradigm is a methodology for producing reusable software components.

• The object-oriented paradigm is a programming methodology that promotes the efficient design
and development of software systems using reusable components that can be quickly and safely
assembled into larger systems.

• Object oriented programming has taken a completely different direction and will place an

emphasis on object s and information. With object oriented programming, a problem will be

broken down into a number of units .these are called objects .The foundation of OOP is the fact

that it will place an emphasis on objects and classes. There are number of advantages to be found

with using the OOP paradigm, and some of these are OOP paradigm.

• Object oriented programming is a concept that was created because of the need to overcome the

problems that were found with using structured programming techniques. While structured

programming uses an approach which is top down, OOP uses an approach which is bottom up.

• A paradigm is a way in which a computer language looks at the problem to be solved. We

divide computer languages into four paradigms: procedural, object-oriented, functional and

declarative

• A paradigm shift from a function-centric approach to an object-centric approach to software

development.

• A program in a procedural paradigm is an active agent that uses passive objects that we refer to

as data or data items.

• The basic unit of code is the class which is a template for creating run-time objects.

• Classes can be composed from other classes. For example, Clocks can be constructed as an

aggregate of Counters.

• The object-oriented paradigm deals with active objects instead of passive objects. We

encounter many active objects in our daily life: a vehicle, an automatic door, a dishwasher and so

on. The actions to be performed on these objects are included in the object: the objects need only

to receive the appropriate stimulus from outside to perform one of the actions.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 2 Dr.Venkateswarulu, Assoc Prof

• A file in an object-oriented paradigm can be packed with all the procedures called methods in

the object-oriented paradigm—to be performed by the file: printing, copying, deleting and so on.

The program in this paradigm just sends the corresponding request to the object.

• Java provides automatic garbage collection, relieving the programmer of the need to ensure that

unreferenced memory is regularly deallocated.

Object Oriented Paradigm – Key Features
• Encapsulation

• Abstraction

• Inheritance

• Polymorphism

A Way of viewing World-

Agents
• A Java agent is a regular Java class which follows a set of strict conventions. The agent class

must implement a public static premain method similar in principle to the main application entry

point. After the Java Virtual Machine (JVM) has initialized, each premain method will be called

in the order the agents were specified, then the real application main method will be called.

There are agent development toolkits and agent programming languages.

• The Agent Identity class defines agent identity. An instance of this class uniquely identifies an

agent. Agents use this information to identify the agents with whom they are interested in

collaborating.

• The Agent Host class defines the agent host. An instance of this class keeps track of every

agent executing in the system. It works with other hosts in order to transfer agents.

• The Agent class defines the agent. An instance of this class exists for each agent executing on a

given agent host.

• OOP uses an approach of treating a real world agent as an object.

• Object-oriented programming organizes a program around its data (that is, objects) and a set of

well-defined interfaces to that data.

• An object-oriented program can be characterized as data controlling access to code by

switching the controlling entity to data.

Responsibility
• In object-oriented design, the chain-of-responsibility pattern is a design pattern consisting of a

source of command objects and a series of processing objects.

• Each processing object contains logicthat defines the types of command objects that it canhandle;

the rest are passed to the next processing object in the chain. A mechanism also exists for adding

new processing objects to the end of this chain.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 3 Dr.Venkateswarulu, Assoc Prof

• Primary motivation is the need for a platform-independent (that is, architecture- neutral)
language that could be used to create software to be embedded in various consumer electronic
devices, such as microwave ovens and remote controls.

• Objects with clear responsibilities.

• Each class should have a clear responsibility.

• If you can't state the purpose of a class in a single, clear sentence, then perhaps your class
structure needs some thought.

• In object-oriented programming, the single responsibility principle states that every class
should have a single responsibility, and that responsibility should be entirely encapsulated by the
class. All its services should be narrowly aligned with that responsibility.

Messages
• Message implements the Part interface. Message contains a set of attributes and a "content".

• Message objects are obtained either from a Folder or by constructing a new Message object of
the appropriate subclass. Messages that have been received are normally retrieved from a folder
named "INBOX".

• A Message object obtained from a folder is just a lightweight reference to the actual message.
The Message is 'lazily' filled up (on demand) when each item is requested from the message.

• Note that certain folder implementations may return Message objects that are pre-filled with
certain user-specified items. To send a message, an appropriate subclass of Message (e.g., Mime
Message) is instantiated, the attributes and content are filled in, and the message is sent using the
Transport. Send method.

• We all like to use programs that let us know what's going on. Programs that keep us informed
often do so by displaying status and error messages.

• These messages need to be translated so they can be understood by end users around the world.

• The Section discusses translatable text messages. Usually, you're done after you move a
message String into a Resource Bundle.

• If you've embedded variable data in a message, you'll have to take some extra steps to prepare
it for translation.

Methods
• The only required elements of a method declaration are the method's return type, name, a
pair of parentheses, (), and a body between braces, {}.

• Two of the components of a method declaration comprise the method signature - the method's
name and the parameter types.

• More generally, method declarations have six components, in order:

• Modifiers - such as public, private, and others you will learn about later.

The return type - the data type of the value returned by the method, but void method does not
return a value to calling method.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 4 Dr.Venkateswarulu, Assoc Prof

• The method name - the rules for field names apply to method names as well, but the
convention is a little different.

• The parameter list in parenthesis - a comma-delimited list of input parameters, preceded by
their data types, enclosed by parentheses, (). If there are no parameters, you must use empty
parentheses(). Ex: int add(int a,int b) { } or int add() { }

• The method body, enclosed between braces - the method's code, including the declaration of
local variables, goes here. { //body of amethod }

Naming a Method
Although a method name can be any legal identifier, code conventions restrict method names.
By convention, method names should be a verb in lowercase or a multi-word name that begins
with a verb in lowercase, followed by adjectives, nouns, etc. In multiword names, the first letter
of each of the second and following words should be capitalized. Here are some examples:
run
runFast
getBackground
getFinalData

Typically, a method has a unique name within its class. However, a method might have the same
name as other methods due to method overloading.

Overloading Methods
• The Java programming language supports overloading methods, and Java can distinguish
between methods with different method signatures. This means that methods within a class can
have the same name if they have different parameter lists (there are some qualifications to this
that will be discussed in the lesson titled "Interfaces and Inheritance").

• In the Java programming language, you can use the same name for all the drawing methods but
pass a different argument list to each method. Thus, the data drawing class might declare four
methods named draw, each of which has a different parameter list.

• Overloaded methods are differentiated by the number and the type of the arguments passed into
the method.

• You cannot declare more than one method with the same name and the same number and type
of arguments, because the compiler cannot tell them apart.

• The compiler does not consider return type when differentiating methods, so you cannot
declare two methods with the same signature even if they have a different return type.

• Overloaded methods should be used sparingly, as they can make code much less readable.

Classes

• In object-oriented terms, we say that your bicycle is an instance of the class of objects known
as bicycles. A class is the blueprint from which individual objects are created.

• Java classes contain fields and methods. A field is like a C++ data member, and a method is
like a C++ member function. In Java, each class will be in its own .java file. Each field and
method has an access level:

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 5 Dr.Venkateswarulu, Assoc Prof

• private: accessible only in this class.

• (package): accessible only in this package.

• protected: accessible only in this package and in all subclasses of this class.

• public: accessible everywhere this class is available.

Each class has one of two possible access levels:

• (package): class objects can only be declared and manipulated by code in this package.
• Public: class objects can be declared and manipulated by code in any package.

• Object: Object-oriented programming involves inheritance. In Java, all classes (built-in or
user-defined) are (implicitly) subclasses of Object. Using an array of Object in the List class
allows any kind of Object (an instance of any class) to be stored in the list. However, primitive
types (int, char, etc) cannot be stored in the list.

• A method should be made static when it does not access any of the non-static fields of the
class, and does not call any non-static methods.

• Java class objects exhibit the properties and behaviors defined by its class. A class can contain
fields and methods to describe the behavior of an object. Current states of a class‗s
corresponding object are stored in the object‗s instance variables.

Creating a class:

A class is created in the following way
Class <class name>
{

Member variables;
Methods;

}

• An object is a software bundle of related state and behavior. Software objects are often used to
model the real-world objects that you find in everyday life. This lesson explains how state and
behavior are represented within an object, introduces the concept of data encapsulation, and
explains the benefits of designing your software in this manner.

Class Variables – Static Fields
We use class variables also know as Static fields when we want to share characteristics across all
objects within a class. When you declare a field to be static, only a single instance of the
associated variable is created common to all the objects of that class. Hence when one object
changes the value of a class variable, it affects all objects of the class. We can access a class
variable by using the name of the class, and not necessarily using a reference to an individual
object within the class. Static variables can be accessed even though no objects of that class
exist. It is declared using static keyword.

Class Methods – Static Methods
Class methods, similar to Class variables can be invoked without having an instance of the class.
Class methods are often used to provide global functions for Java programs.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 6 Dr.Venkateswarulu, Assoc Prof

For example, methods in the java.lang.Math package are class methods. You cannot call
nonstatic methods from inside a static method. Bundling code into individual software objects
provides a number of benefits, including:

• Modularity: The source code for an object can be written and maintained independently of the
source code for other objects. Once created, an object can be easily passed around inside the
system.

• Information-hiding: By interacting only with an object's methods, the details of its internal
implementation remain hidden from the outside world.

• Code re-use: If an object already exists (perhaps written by another software developer), you
can use that object in your program. This allows specialists to implement/test/debug complex,
task-specific objects, which you can then trust to run in your own code.

• Pluggability and debugging ease: If a particular object turns out to be problematic, you can
simply remove it from your application and plug in a different object as its replacement. This is
analogous to fixing mechanical problems in the real world. If a bolt breaks, you replace it, not
the entire machine.

An instance or an object for a class is created in the following way
<class name> <object name>=new <constructor>();

Encapsulation:

• Encapsulation is the mechanism that binds together code and the data it manipulates, and
keeps both safe from outside interference and misuse.

• One way to think about encapsulation is as a protective wrapper that prevents the code and data
from being arbitrarily accessed by other code defined outside the wrapper.

• Access to the code and data inside the wrapper is tightly controlled through a well-defined
interface.

• To relate this to the real world, consider the automatic transmission on an automobile.

• It encapsulates hundreds of bits of information about your engine, such as how much we are
accelerating, the pitch of the surface we are on, and the position of the shift.

• The power of encapsulated code is that everyone knows how to access it and thus can use it
regardless of the implementation details—and without fear of unexpected side effects.

Polymorphism:

Polymorphism (from the Greek, meaning ―many forms‖) is a feature that allows one interface to
be used for a general class of actions (One in many forms).

• The specific action is determined by the exact nature of the situation. Consider a stack (which
is a last-in, first-out list). We might have a program that requires three types of stacks. One stack
is used for integer values, one for floating-point values, and one for characters. The algorithm
that implements each stack is the same, even though the data being stored differs.

• In Java we can specify a general set of stack routines that all share the same names.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 7 Dr.Venkateswarulu, Assoc Prof

More generally, the concept of polymorphism is often expressed by the phrase - one interface,
multiple methods. This means that it is possible to design a generic interface to a group of related
activities.

• This helps reduce complexity by allowing the same interface to be used to specify a general

class of action.

• Polymorphism allows us to create clean, sensible, readable, and resilient code.

Inheritance or class Hierarchies:

• Object-oriented programming allows classes to inherit commonly used state and behavior from
other classes. Different kinds of objects often have a certain amount in common with each other.

• In the Java programming language, each class is allowed to have one direct superclass, and
each superclass has the potential for an unlimited number of subclasses.

• Mountain bikes, road bikes, and tandem bikes, for example, all share the characteristics of
bicycles (current speed, current pedal cadence, current gear). Yet each also defines additional
features that make them different: tandem bicycles have two seats and two sets of handlebars;
road bikes have drop handlebars; some mountain bikes have an additional chain ring, giving
them a lower gear ratio. In this example, Bicycle now becomes the super class of Mountain
Bike, Road Bike, and Tandem Bike.

• The syntax for creating a subclass is simple. At the beginning of your class declaration, use the
extends keyword, followed by the name of the class to inherit from:

class <sub class> extends <super class>

{

// new fields and methods defining a sub class would go here

}

The different types of inheritance are:

1. Single level Inheritance.
2. Multilevel Inheritance.
3. Hierarchical inheritance.
4. Multiple inheritance.
5. Hybrid inheritance.

Multiple, hybrid inheritance is not used in the way as other inheritances but it needs a special

concept called interfaces.

Method Binding:

• Binding denotes association of a name with a class.

• Static binding is a binding in which the class association is made during compile time.
This is also called as early binding.

• Dynamic binding is a binding in which the class association is not made until the object is
created at execution time. It is also called as late binding.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 8 Dr.Venkateswarulu, Assoc Prof

Abstraction:
Abstraction in Java or Object oriented programming is a way to segregate/hiding

implementation from interface and one of the five fundamentals along with Encapsulation,
Inheritance, Polymorphism, Class and Object.

• An essential component of object oriented programming is Abstraction.

• Humans manage complexity through abstraction.

• For example people do not think a car as a set of tens and thousands of individual parts. They
think of it as a well defined object with its own unique behavior.

• This abstraction allows people to use a car ignoring all details of how the engine, transmission
and braking systems work.

• In computer programs the data from a traditional process oriented program can be transformed
by abstraction into its component objects.

• A sequence of process steps can become a collection of messages between these objects. Thus
each object describes its own behavior.

Overriding:
• In a class hierarchy when a sub class has the same name and type signature as a method in the
super class, then the method in the subclass is said to override the method in the super class.

• When an overridden method is called from within a sub class, it will always refer to the version
of that method defined by the sub class.

• The version of the method defined by the super class will be hidden.

Exceptions:
• An exception is an abnormal condition that arises in a code sequence at run time. In other
words an exception is a run time error.

• A java exception is an object that describes an exceptional condition that has occurred in a
piece of code. When an exceptional condition arises, an object representing that exception is
created and thrown in the method that caused the error.

Summary of OOP concepts

OOP) is a programming paradigm that represents concepts as "objects" that have data fields
(attributes that describe the object) and associated procedures known as methods.

• Objects, which are usually instances of classes, are used to interact with one another to design
applications and computer programs.

• Object-oriented programming is an approach to designing modular, reusable software systems.

• The goals of object-oriented programming are:
 Increased understanding
 Ease of maintenance
 Ease of evolution.
 Object orientation eases maintenance by the use of encapsulation and information hiding.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 9 Dr.Venkateswarulu, Assoc Prof

Object-Oriented Programming – Summary of Key Terms

Definitions of some of the key concepts in Object Oriented Programming (OOP)
Term Definition

Abstract Data Type A user-defined data type, including both attributes (its state) and
methods (its behavior).

Aggregation Objects that are made up of other objects are known as
aggregations. The relationship is generally of one of two types:
• Composition – the object is composed of other objects. This
form of aggregation is a form of code reuse. E.g. A Car is

composed of Wheels, a Chassis and an Engine

• Collection – the object contains other objects. E.g. a List

contains several Items; A Set several Members.

Attribute A characteristic of an object. Collectively the attributes of an
object describe its state. E.g. a Car may have attributes of

Speed, Direction, Registration Number and Driver.

Class The definition of objects of the same abstract data type. In Java
class is the keyword used to define new types.

Encapsulation The combining together of attributes (data) and methods
(behavior/processes) into a single abstract data type with a
public interface and a private implementation. This allows the
implementation to be altered without affecting the interface.

Inheritance Acquiring the properties from base class to derived class. The
first class is often referred to the base or parent class. The
child is often referred to as a derived or sub-class. Inheritance
is one form of object-oriented code reuse.

E.g. Both Motorbikes and Cars are kinds of Motor Vehicles and

therefore share some common attributes and behaviour but may

add their own that are unique to that particular type.

Interface The behaviour that a class exposes to the outside world; its
public face. Also called its contract‗. In Java interface is also a
keyword similar to class.
However a Java interface contains no implementation: simply
describes the behavior of an Object.

Member Variable A characteristic of an object or See attribute

Method The implementation of some behaviour of an object.

Message The invoking of a method of an object. In OOPs objects send
each other messages to achieve the desired behaviour.

Object An instance of a class. Objects have state, identity and
behaviour.

Overloading Allowing the same method name to be used for more than one
implementation. The different versions of the method vary
according to their parameter lists. If this can be determined at
compile time then static binding is used, otherwise dynamic
binding is used to select the correct method as runtime.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 10 Dr.Venkateswarulu, Assoc Prof

Polymorphism Generally, the ability of different classes of object to respond to
the same message in different, class-specific ways. Polymorphic
methods are used which have one name but different
implementations for different classes.
E.g. Both the Plane and Car types might be able to respond to a

turnLeft message. While the behaviour is the same, the means

of achieving it are specific to each type.

Primitive Type The basic types which are provided with a given object oriented
programming language. E.g. int, float, double, char, Boolean

Static(Early) Binding The identification at compile time of which version of a
polymorphic method is being called. In order to do this the
compiler must identify the class of an object.

Dynamic (Late) Binding The identification at run time. When the class of an object
cannot be identified at compile time, so dynamic binding must
be used.

Advantage of OOPs over Procedure-oriented programming language

 OOPs makes development and maintenance easier where as in Procedure-oriented
programming language it is not easy to manage if code grows as project size grows.

 OOP provides data hiding whereas in Procedure-oriented programming language a global
data can be accessed from anywhere.

 OOP provides ability to simulate real-world event much more effectively. We can provide
the solution of real word problem if we are using the Object-Oriented Programming language.

Procedure Oriented Programming Object Oriented Programming
In POP, program is divided into small parts In OOP, program is divided into parts
called functions called objects

Importance is not given to data but to
functions as well as sequence of actions to be
done.

Importance is given to the data rather than
procedures or functions because it works as
a real world

POP follows Top Down approach. OOP follows Bottom Up approach.
POP does not have any access specifier. OOP has access specifiers Public, Private,

Protected, etc.
In POP, Data can move freely from function
to function in the system.

In OOP, objects can move and communicate
with each other through member functions.

To add new data and function in POP is not so
easy (Project grows)

OOP provides an easy way to add new data and
function.

POP does not have any proper way for hiding OOP provides Data Hiding so provides more
data so it is less secure security

In POP, Overloading is not possible. Overloading is possible in the form of Function
Overloading and Operator Overloading.

Most function uses Global data for sharing
that can be accessed freely from function to
function in the system.

Data cannot move easily from function to
function, it can be kept public or private so we
can control the access of data.

Example of POP are: C, VB, Pascal, etc. Example OOP: C++, JAVA, VB.NET, C#.NET.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 11 Dr.Venkateswarulu, Assoc Prof

Java Basics:

History of JAVA

Java is a high level programming Language. It was introduced by ―SUN Microsystems‖ in June
1995. It was developed by a team under James Gosling. Its original name was ―OAK‖ and later
renamed to Java. Java has become the standard for Internet applications.

Since the Internet consists of different types of computers and operating systems. A common
language needed to enable computers. To run programs that run on multiple plot forms.

Java is Object-Oriented language built on C and C++. It derives its syntax from C and its
Object-Oriented features are influenced by C++.

Java can be used to create two types of programs
 Applications
 Applets.

An application is a prg.that runs on the user‘s computers under the operating system.

An Applet is a small window based prg.that runs on HTML page using a java enabled web
browser like internet Explorer, Netscape Navigator or an Applet Viewer.

The Java Programming Environment
Applets are java programs. That run as part of a web page and they depend on a web browser in
order to run. Applications are programs that are stored on the user‘s system and they do not need
a web browser in order to run.

The Java programming environment includes a number of development tools to develop applet
and application. The development tools are part of the system known as “Java Development
Kit” or “ JDK”. The JDK include the following.

1. Packages that contain classes.
2. Compiler
3. Debugger

JDK (java development tool kit):
It is a software package from the sun micro systems where a new package JFC(java foundation

classes) was available as a separate package

JDK provides tools in the bin directory of JDK and they are as follows:
Javac: Javac is the java compiler that translates the source code to byte codes. That is, it
converts the source file. Namely the .java file to .class file.

Java: The java interpreter which runs applets and Applications by reading and interpreting the
byte code files. That is, it executes the .class file.

Javadoc: Javadoc is the utility used to produce documentation for the classes from the java files.

JDB: JDB is a debugging tool.

The way these tools are applied to build and run application programs is as follows:

The source code file is created using a text editor and saved with a .java (with Extension). The
source code is compiled using the java compiler javac. This translates source code to byte
codes. The compiled code is executed using the java interpreter java.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 12 Dr.Venkateswarulu, Assoc Prof

JVM (JAVA VIRTUAL MACHINE)
Java is both compiled and an interpreted lang. First the java compiler translates source code
into the byte code instructions. In the next stage the java interpreter converts the byte code
instructions to machine code. This machine within the computer‘ is known as the “Java Virtual
Machine” or JVM.

The JVM can be thought as a mini operating system that forms a layer of abstraction where the
underlying hardware. The portability feature of the .class file helps in the execution of the prg
on any computer with the java virtual machine. This helps in implementing the “write once and
run anywhere” feature of java.

JAVA RUNTIME ENVIRONMENT
JRE consists of the java virtual machine. The java plot form core classes and supporting files. It
is the run time part of the java Development Kit. No compiler, no debugger, no tools.

Loding the .class files: Performed by the ‗ class loader‘ .
Verifying bytecode: Performed by the ‗ bytecode verifier‘ .
Executing the code : Performed by the runtime interpreter.

JIT (JUST – IN – TIME)

Just – In – Time (JIT) compiler is a program that runs java bytecode into instructions that can be
sent directly to the processor. (Machine code).

Steps to execute a java prg:
? Open any editor such as notepad
? Type the source code
? Save it with .java extension (File Name and class name must be same)
? Compile it
? Run it

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 13 Dr.Venkateswarulu, Assoc Prof

Steps to compile a java prg:
? Open Dos prompt
? Set the path Ex: path=c:\jdk1.2.2\bin and press enter key
? Move to your working directory/folder
? Compile the prg Ex: javac filename.java
? Run the prg Ex: java filename

IN THE JAVA PROGRAM:
public: It indicates that main() can be called outside the class.

static: It is an access specifier, which indicates that main() can be called directly without
creating an object to the class.

void: It indicates that the method main() doesn‘ t return a value.

main(): It is a method which is an entry point into the java prg. When you run a java prg.main()
is called first.

String args []: String is a class, which belongs to java.lang package. It can be used as a string
data type in java.

args[]: It is an array of string type. It is used to store command line args.

System: It is a class, which belongs to java.lang package.

out: It is an output stream object, which is a member of System class.

println(): It is a method supported by the output stream object ―out‖. It is used to display any kind
of output on the screen. It gives a new line after printing the output.

print(): It is similar to println(). But doesn‘ t give a new line after printing the output.

Java‟s Byte code:
The key that allows java to solve the both security and portability problems is that the output of a
java compiler is not executable code rather it is byte code. Byte code is highly optimized set of
instructions designed to be executed by java runtime systems, which is called JVM.

Byte codes are instructions that are generated for a virtual machine. A virtual machine is a
program that processes these generalized instructions to machine specific code.

Differences of JAVA from C++
 No typedefs, defines or preprocessors

 No header files

 No structures and unions

 No enums (enum class is there)

 No functions – only methods in classes

 No multiple inhehitance trough class (achieve using interface)

 No operator overloading (except ‗+‘ for string concatenation)

 No automatic type conversions (except for primitive types)

 No pointers

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 14 Dr.Venkateswarulu, Assoc Prof

Java Buzzwords or Features of Java:
No discussion of the genesis of Java is complete without a look at the Java buzzwords. Although
the fundamental forces that necessitated the invention of Java are portability and security, other
factors also played an important role in mol ding the final form of the language. The key
considerations were summed up by the Java team in the following list of buzzwords:

1. Simple: Java follows the syntax of C and Object Oriented principles of C++. It eliminates the
complexities of C and C++. Therefore, Java has been made simple.

2. Object-Oriented: It is an Object-Oriented programming language. The object model in Java
is simple. Although influenced by its procedures. It was designed to be source code compatible
with any other language.

3. Plot form Independent: Plot form is the combination of operating system and
microprocessor. Java programming works in all plot forms. It is achieved by JVM (Java Virtual
Machine). The philosophy of java is ―Write Once, Run anywhere‖ (WORA).

4. Robust: Java is strictly a typed language. It has both a compiler and an interpreter. Compiler
checks code at run time and garbage collection is taking care of by java automatically. Thus it is
a robust language.

5. Secure: java developers have taken all care to make it a secure programming language.
For Ex. Java Applets are restricted from Disk I/O of local machine.

6. Distributed: Java is designed for the distributed environment of the Internet. It handles
TCP/IP protocols. Java‘s remote method invocation (RMI) make distributed programming
Possible.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 15 Dr.Venkateswarulu, Assoc Prof

7. Multithreaded: Java was designed to meet the real-world requirement. To achieve this, java
supports multithreaded programming. It is the ability to run any things simultaneously.

8. Dynamic: That is run time. This makes it possible to dynamically link code in a safe and
secure manner.

9. Architecture-Neutral
A central issue for the Java designers was that of code longevity and portability. One of the main
problems facing programmers is that no guarantee exists that if you write a program today, it will
run tomorrow—even on the same machine.

Operating system upgrades, processor upgrades, and changes in core system resources can all
combine to make a program malfunction. The Java Virtual Machine (JVM) in an attempt to alter
this situation. Their goal was ―write once; run anywhere, anytime, forever.

10. Interpreted and High Performance
Java enables the creation of cross-platform programs by compiling into an intermediate
representation called Java byte code. This code can be interpreted on any system that provides a
Java Virtual Machine. It would be easy to translate directly into native machine code for very
high performance by using a just-in-time compiler.

Comments: There are 3 types of comments defined by java. Those are Single line comment,
multilane comment and the third type is called documentation comment. This type of comment is
used to produce an HTML file that documents your prg.
// this is single line comment.
/* this multiple
line comment*/
/** this documentation comment */

Key words:
Keywords are the words. Those have specifics meaning in the compiler. Those are called
keywords. There are 49 reserved keywords currently defined in the java language. These
keywords cannot be used as names for a variable, class or method. Those are,

Java Is a Strongly Typed Language
It is important to state at the outset that Java is a strongly typed language. Indeed, part of Java‘s
safety and robustness comes from this fact. Let‘s see what this means.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 16 Dr.Venkateswarulu, Assoc Prof

First, every variable has a type, every expression has a type, & every type is strictly defined.
Second, all assignments, whether explicit or via parameter passing in method calls, are checked
for type compatibility. There are no automatic coercions or conversions of conflicting types as in
some languages.

The Java compiler checks all expressions and parameters to ensure that the types are compatible.
Any type mismatches are errors that must be corrected before the compiler will finish compiling
the class.

For example, in C/C++ you can assign a floating-point value to an integer as shown below
int n=12.345;
where in the above case the integer variable holds only the round part of the assigned fraction
value as n=12.

In Java, you cannot. Also, in C there is not necessarily strong type-checking between a
parameter and an argument. In Java, there is.

DATA TYPES:
The data, which gives to the computer in different types, are called Data Types or Storage
representation of a variable is called Data Type. Java defines 8 types of data: byte, short, int,
long, float, double, char and Boolean.

These can be put in Four types:

Integer: this group includes byte, short, int & long, which are whole valued signed numbers.

Floating-point numbers: float & double, which represents numbers with fractional precision.

Character: This represents symbols in a character set, like letters and numbers.

Boolean: This is a special type for representing true / false values.

Examples of double and char
class FindSqrt
{
public static void main(String args[])
{

double d1=25,d2=34;
System.out.println("Sqrt of d1

is:"+Math.sqrt(d1));
System.out.println("Sqrt of d2

is:"+Math.sqrt(d2));
}

}

class CharDemo {
public static void main(String args[]) {
char ch1, ch2;
ch1 = 88; // code for X
ch2 = 'Y';
System.out.print("ch1 and ch2: ");
System.out.println(ch1 + " " + ch2);
}
}
This program displays the following output:
ch1 and ch2: X Y

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 17 Dr.Venkateswarulu, Assoc Prof

Examples of boolean
class BoolTest
{
public static void main(String args[])
{

boolean b;
b = false;
System.out.println("b is " + b);
b = true;
System.out.println("b is " + b);
if(b){
System.out.println("This is executed."); }

Variables:

b = false;
if(b) {
System.out.println("This is not executed.");}
System.out.println("10 > 9 is " + (10 > 9));
}
}
Output:
b is false
b is true
This is executed.
10 > 9 is true

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have a
scope, which defines their visibility, and a lifetime. In Java, all variables must be declared before
they can be used. The basic form of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...];

Ex: int a, b, c; // declares three ints, a, b, and c.
int d = 3, e, f = 5; // declares three more ints
byte z = 22; // initializes z.

double pi = 3.14159; // declares an approximation of pi.
char x = 'x'; // the variable x has the value 'x'.

Constant identifiers:
Final keyword is used for constants. Constant identifiers consist of all capital letters. Internal
words are separated by an underscore (_).
Example: final double TAX_RATE = .05

The Scope and Lifetime of Variables:
All of the variables used till now have been declared at the start of the main() method. However,
Java allows variables to be declared within any block. A block is begun with an opening curly
brace and ended by a closing curly brace. A block defines a scope.

Most other computer languages define two general categories of scopes: global and local.
The scope defined by a method begins with its opening curly brace.

Objects declared in the outer scope will be visible to code within the inner scope. However, the
reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:
// demonstrate block scope.
class Scope
{

public static void main(String args[])
{

int x; // code within main
x = 10;

if(x == 10)
{ // start new scope

int y = 20; // known only to this block

// x and y both known here.
System.out.print("x and y:" +x+ " " + y);
x = y * 2;

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 18 Dr.Venkateswarulu, Assoc Prof

} }
y = 100; // Error! y not known here }
// x is still known here.
System.out.print("\tx is " + x);

Output: x and y: 10 20 x is 40

Types of variables: Java has 4 different kinds of variables
 local variables
 parameter variables
 class variables
 instance variables

Local variables:
A local variable will exists as long as the method in which they have been created is still running
As soon as the method terminates, all the local variables inside the method are destroyed.
Example: Scope of local variables:
class SomeClass
{
public static void main(String args[])
{

double x;
…………… Local variables
int y;

}
}

Non-overlapping (or disjoint) scopes:

class Scope2
{
public static void main(String args[]) {
void show(){
double r;
r=3.14;
}
System.out.println(r); //Causes error is not
} accessible outside the block

}

It is possible to declare two variables with the same name in two different block scopes as shown
below
class Scope {
public static void main(String args[]) {

- - - - - - -
{ double r;

{
String r;

} }
}
}

Parameter variables:
A parameter variable is used to store information that is being passed from the location of the
method call into the method that is called.
class ToolBox
{ a=1.0 b=2.0
public static double min(double a,double b) //Parameter variables
{ ……………….. }

}
class MyProgram
{

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 19 Dr.Venkateswarulu, Assoc Prof

public static void main(String args[]) {
double r;
r=ToolBox.min(1.0,2.0);
} }

Life and scope of parameter variable:
The life time of a parameter variable is the entire body of the method
• A parameter variable behaves like a local variable that is defined at the Start of the method

Class variables:
Variables that are declared with the keyword static are called as class variables

Life of class variables: Class variables exists for the entire execution of the java program

Scope of class variables: The scope can be public
class StaticData
{
static int a=10,b=20; //Access these variables through class name, because of static.

}
class StaticDemo
{

public static void main(String args[])
{

int sum=StaticData.a+StaticData.b;
System.out.println("sum is"+sum);

} }

Instance variables:
Non static variables that are declared inside a class are called as instance variables.
class StaticData
{
int a=10,b=20; //instance variables of StaticData class

}

Life and scope of Instance variables:
It is limited only the object specified upon the class

Literals

Integer Literals
Integers are probably the most commonly used type in the typical program. Any hole number
value is an integer literal. Examples are 1, 2, 3, and 42.

Integer literals are classified into three types as
 Decimal literal  Octal literal  Hexadecimal literal

Decimal literals
These are all decimal values, meaning they are describing a base 10 number. There are two other
bases which can be used in integer literals

Example: int n=10;

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 20 Dr.Venkateswarulu, Assoc Prof

Octal literals
Octal (base eight). Octal values are denoted in Java by a leading zero. Normal decimal numbers
cannot have a leading zero.
Thus, the seemingly valid value 09 will produce an error from the compiler, since 9 is outside of
octal‟s 0 to 7 range.

Example: int n=07;

Hexadecimal literals:
Hexadecimal (base 16), A more common base for numbers used by programmers is
hexadecimal, which matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits.
You signify a hexadecimal constant with a leading zero-x, (0x or 0X). The range of a
hexadecimal digit is 0 to 15, so A through F (or a through f) are substituted for 10 through 15.

Example: int n=0xfff;

Example Program:
class Literal
{
public static void main(String args[])
{

int dec=10,oct=07,hex=0xff;

System.out.print("decimal literal is:"+dec);
System.out.println("octal literal is:"+oct);
System.out.println("hexadecimal is:"+hex);
}

}

Floating-Point Literals
Floating-point numbers represent decimal values with a fractional component.

Example: float f=12.346f (or) 12.346F;
double d=34.5678d (or) 34.5678D;

Boolean Literals
Boolean literals are simple. There are only two logical values that a boolean value can have, true

and false. The true literal in Java does not equal 1, nor does the false literal equal 0.

Character Literals
Characters in Java are indices into the Unicode
character set. They are 16-bit values. A literal
character is represented inside a pair of single quotes.
All of the visible ASCII characters can be directly
entered inside the quotes, such as ‗a‘, ‗z‘, and ‗@‘.

String Literals
String literals in Java are enclosing a sequence of
characters between a pair of double quotes.

Ex: ―Hello World‖ ―two\nlines‖
―\‖This is in quotes\‖‖

Escape Sequence Meaning
\n new line
\t horizontal tab
\v vertical tab
\b Backspace
\r carriage return
\f form feed
\a Bell
\\ text literal
\' ' char literal
\" " String literal
\ddd Octal character(ddd)
\uxxxx Hexa character (xxxx)

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 21 Dr.Venkateswarulu, Assoc Prof

Java Naming conventions
Java naming convention is a rule to follow as you decide what to name your identifiers such as
class, package, variable, constant, method etc. But, it is not forced to follow. So, it is known as
convention not rule.

All the classes, interfaces, packages, methods and fields of java programming language are given
according to java naming convention.

Advantage of naming conventions in java
By using standard Java naming conventions, you make your code easier to read for yourself and
for other programmers. Readability of Java program is very important.

Name Convention

class name Should start with uppercase letter and be a noun e.g. String, Color,
Button, System, Thread etc. Ex: class MyClass

interface name Should start with uppercase letter and be an adjective
e.g. Runnable, Remote, ActionListener etc.

method name Should start with lowercase letter and be a verb
e.g. actionPerformed(), main(), print(), println() etc.

variable name Should start with lowercase letter e.g. firstName, orderNumber etc.

package name Should be in lowercase letter e.g. package java.lang;

constants name Should be in uppercase letter. e.g. RED, YELLOW,
MAX_PRIORITY etc. e.g. final double TAX_RATE = .05

Camel Case in java naming conventions
Java follows camelcase syntax for naming the class, interface, method and variable. If name is
combined with two words, second word will start with uppercase letter always.

e.g. actionPerformed(), firstName, ActionEvent, ActionListener etc.

OPERATORS:
Operator is a Symbol. Java provides a rich set of operators as

The Arithmetic Operators:
Arithmetic operators are used in mathematical expressions in the same way that they are used in
algebra. The arithmetic operators are: + - * / %

The Relational Operators: It tells the relationship b/w two operands e.g., a>b, a<b, a==b, a<=b , a>=b

== (equal to),!= (not equal to),> (greater than),< (less than),>= (greater than or equal to),<=
(less than or equal to)

The Assignment Operators(=):Thisoperatoris usedto assignthevalueof a variable.E.g. a=4

Short hand assignment operator: += -= *= /= %= E.g. a+=4 (a=a+4)

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 22 Dr.Venkateswarulu, Assoc Prof

a = 0011 1100
b = 0000 1101

a&b = 0000 1100
a|b = 0011 1101
a^b = 0011 0001
~a = 1100 0011

The Bitwise Operators:
Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; b = 13;
now in binary format they will be as follows:

Binary Left Shift Operator: << (left shift)
It is moved left by the number of bits specified by the right operand.
Example: A << 2 will give 240 which is 1111 0000

Binary Right Shift Operator: >> (right shift)
It is moved right by the number of bits specified by the right operand.
Example: A >> 2 will give 15 which is 1111

Shift right zero fill operator : >>> (zero fill right shift)
It is moved right by the number of bits specified by the right operand and shifted values are
filled up with zeros.
Example: A >>>2 will give 15 which is 0000 1111

The Logical Operators:

Logical AND operator: && (logical and)
If both the operands are non-zero, then the condition becomes true.
Example (A && B) is false. (0 && 1) or (1 && 0) or (0 && 0) is false & (1 && 1) is true

Logical OR Operator: || (logical or)
If any of the two operands are non-zero, then the condition becomes true.
Example (A || B) is true. (0 || 1) or (1 || 0) or (1 || 1) is true & (0 || 0) is false

Logical NOT Operator: ! (logical not)
Use to reverses the logical state of its operand. If a condition is true then Logical NOT

operator will make false.
Example !(A && B) is true.

instanceof Operator: Type comparision operator
This operator is used only for object reference variables. The operator checks whether the object
is of a particular type (class type or interface type). instanceof operator is written as:

public class Test
{

public static void main(String args[])
{

String name = "James";
boolean result = name instanceof String;
System.out.println(result);
}

}

Op: James

Unary operators: + - ++ - - ! sizeof

(Object reference variable) instanceof (class/interface type)

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 23 Dr.Venkateswarulu, Assoc Prof

Conditional Operator (? :)
Conditional operator is also known as the ternary operator. This operator consists of three
operands and is used to evaluate Boolean expressions. The goal of the operator is to decide
which value should be assigned to the variable. The operator is written as:

Operator Precedence:

Expressions:
An expression is a construct made up of variables, operators, and method invocations, which are
constructed according to the syntax of the language that evaluates to a single value.

int a = 0;
arr[0] = 100;
System.out.println("Element 1 at index 0: " + arr[0]);
int result = 1 + 2; // result is now 3

Statements
Statements are roughly equivalent to sentences in natural languages. A statement forms a
complete unit of execution. The following types of expressions can be made into a statement by
terminating the expression with a semicolon (;). Ex: System.out.print(A+B);

Type Conversion and Casting:
We can assign a value of one type to a variable of another type. If the two types are compatible,
then Java will perform the conversion automatically. For example, it is always possible to assign
an int value to a long variable. However, not all types are compatible, and thus, not all type
conversions are implicitly allowed. For instance, there is no conversion defined from double to
byte.
But it is possible for conversion between incompatible types. To do so, you must use a cast,
which performs an explicit conversion between incompatible types.

Java„s Automatic Conversions
When one type of data is assigned to another type of variable, an automatic type conversion will

take place if the following two conditions are satisfied:

• The two types are compatible.
• The destination type is larger than the source type.

int x = (10>20)? 100 : 200

variable x = (expression)? value if true : value if false

}

 JAVA PROGRAMMING(CS2205PC)

When these two conditions are met, a widening conversion (Small data type to Big data type)
takes place. For example, the int type is always large enough to hold all valid byte values, so no

explicit cast statement is required.

For widening conversions, the numeric types, including integer and floating-point types, are
compatible with each other. However, the numeric types are not compatible with char or
boolean. Also, char and boolean are not compatible with each other.

Java also performs an automatic type conversion when storing a literal integer constant into
variables of type byte, short, or long.

Casting Incompatible Types
The automatic type conversions are helpful, they will not fulfill all needs. For example, if we
want to assign an int value to a byte variable. This conversion will not be performed
automatically, because a byte is smaller than an int. This kind of conversion is sometimes
called a narrowing conversion, since you are explicitly making the value narrower so that it will
fit into the target type. To create a conversion between two incompatible types, you must use a
cast. A cast is simply an explicit type conversion.

It has this general form:
(target-type) value

Here, target-type specifies the desired type to convert the specified value to.

Example:
int a;
byte b;
b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an integer
type: truncation. As integers do not have fractional components so, when a floating-point value
is assigned to an integer type, the fractional component is lost.

Example Program: Conversion.java

class Conversion {
public static void main(String args[]) {
byte b;
int i = 257;
double d = 323.142;
System.out.println("\nConversion of int to byte.");
b = (byte) i;
System.out.println("i and b " + i + " " + b);
System.out.println("\nConversion of double to int.");
i = (int) d;
System.out.println("d and i " + d + " " + i);
System.out.println("\nConversion of double to byte.");
b = (byte) d;
System.out.println("d and b " + d + " " + b);}

}

 JAVA PROGRAMMING(CS2205PC)

The Type Promotion Rules
Java defines several type promotion rules that apply to expressions. They are as follows:

First, all byte, short, and char values are promoted to int, as just described. Then, if one operand
is a long, the whole expression is promoted to long. If one operand is a float, the entire
expression is promoted to float. If any of the operands is double, the result is double.
Ex:
class Promote {
public static void main(String args[]) {
byte b = 42;
char c = 'a';
short s = 1024;
int i = 50000;
float f = 5.67f;

double d = .1234;
double result = (f * b) + (i / c) - (d * s);
System.out.println((f * b) + " + " + (i / c) + "
- " + (d * s));
System.out.println("result = " + result);
}
}

Let‟s look closely at the type promotions that occur in this line from the program:
double result = (f * b) + (i / c) - (d * s);

In the first subexpression, f * b, b is promoted to a float and the result of the subexpression is
float. Next, in the subexpression i/c, c is promoted to int, and the result is of type int. Then, in
d*s, the value of s is promoted to double, and the type of the sub expression is double.

Control Statements or Control Flow:

IF Statement
The IF statement is Java‘s conditional branch statement. It can be used to route program
execution through two different paths.

The general form of the if statement:
if (condition) statement1;

Here, each statement may be a single statement or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a Boolean value. If the
condition is true, then statement1 is executed.

IF –ELSE Statement
If the condition is true, then statement1 is executed. Otherwise statement2 is executed.

The general form of the if statement:
if (condition) statement1;
else statement2;

The if-then-else statement provides a secondary path of execution when an "if" clause evaluates
to false.
void ifClause()
{
int a, b;
if(a < b)
a = 0;
else

Nested ifs
A nested if is an if statement that is the target of another if or else. Here is an example:
if(i == 10)
{
if(j < 20)
a = b;
if(k > 100)
c = d; // this if is
else
a = c; // associated with this else

}
else a = d; // this else refers to if(i == 10)

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the if-else-if
ladder. It looks like this:

if(condition)
statement;
else if(condition)
statement;
else if(condition)
statement;
else
statement;

Example: // Demonstrate if-else-if statements.
class IfElse
{
public static void main(String args[])
{

int month = 4; // April
String season;
if(month == 12 || month == 1 || month == 2)
season = "Winter";
else if(month == 3 || month == 4 || month == 5)
season = "Spring";
else if(month == 6 || month == 7 || month == 8)
season = "Summer";
else if(month == 9 || month == 10 || month == 11)
season = "Autumn";
else
season = "Bogus Month";
System.out.println("April is in the " + season + ".");

}
}
Output:
April is in the Spring.

 JAVA PROGRAMMING(CS2205PC)

The switch Statement
Unlike if-then and if-then-else, the switch statement allows for any number of possible execution
paths. A switch works with the byte, short, char, and int primitive data types. It also works with
enumerated types.

Program: displays the name of the month, based on the value of month, using the switch
statement.

class SwitchDemo
{

public static void main(String[] args) {
int month = 8;
switch (month) {
case 1: System.out.println("January");

break;
case 2:
System.out.println("February");

break;
case 3: System.out.println("March");

break;
case 4: System.out.println("April");

break;
case 5: System.out.println("May");

break;
case 6: System.out.println("June");

break;
case 7: System.out.println("July");

break;
case 8: System.out.println("August");

break;

Iteration Statements

case 9: System.out.println("September");
break;

case 10: System.out.println("October");
break;

case 11: System.out.println("November");
break;

case 12: System.out.println("December");
break;

default: System.out.println("Invalid
month.");

break;
}

}
}

Output:"August"

Java‘s iteration statements are for, while, and do-while. These statements create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met.

The while Statement
The while statement continually executes a block of statements while a particular condition is
true. Its syntax can be expressed as:

while (expression)
{

Statements // body of loop
}

Note: The while statement evaluates an expression, which must return a Boolean value.

 JAVA PROGRAMMING(CS2205PC)

Ex: class WhileDemo
{

public static void main(String[] args)
{

int count = 1;
while (count < 11)
{

System.out.println("Count is: " + count);
count++;

}
}

}

Output: Count is:1 Count is:2 Count is:10

do-while statement
The do-while loop always executes its body at least once, because its conditional expression is at
the bottom of the loop. Its syntax can be expressed as:

do
{

statement(s)
} while (expression);

The difference between do-while and while is that do-while evaluates its expression at the
bottom of the loop instead of the top. Therefore, the statements within the do block are always
executed at least once and while terminates with semicolon.

Ex Program:
class DoWhileDemo
{

public static void main(String[] args){
int count = 1;
do {

System.out.println("Count is: " + count);
count++;

} while (count < 11);
}

}
Output: Count is:1 Count is:2 Count is:10

The for Statement
The for statement provides a compact way to iterate over a range of values. Programmers often
refer to it as the "for loop" because of the way in which it repeatedly loops until a particular
condition is satisfied.

The general form of the for statement can be expressed as follows:

for (initialization; termination; increment) {
statement(s)

}

 JAVA PROGRAMMING(CS2205PC)

Ex: class ForTick {
public static void main(String args[]) {

for(int n=10; n>0; n--)
System.out.println("tick " + n);

}
}

When using the for statement, we need to remember that
• The initialization expression initializes the loop; it's executed once, as the loop begins.
• When the termination expression evaluates to false, the loop terminates.
• The increment expression is invoked after each iteration through the loop; it is perfectly
acceptable for this expression to increment or decrement a value.

// Without using the comma.
class Sample {
public static void main(String args[]) {
int a, b;
b = 4;
for(a=1; a<b; a++) {
System.out.println("a = " + a);
System.out.println("b = " + b);
b--;
}
} }

Output:
a = 1
b = 4
a = 2
b = 3

For-Each Version of the for Loop

// Using the comma.
class Comma {
public static void main(String args[]) {
int a, b;
for(a=1, b=4; a<b; a++, b--) {
System.out.println("a = " + a);
System.out.println("b = " + b);
}
}
}

Output:
a = 1
b = 4
a = 2
b = 3

A for-each style loop is designed to cycle through a collection of objects, such as an array, in
strictly sequential fashion, from start to finish. A for-each loop by using the keyword foreach,

Java adds the for-each capability by enhancing the for statement. The advantage of this approach
is that no new keyword is required, and no pre existing code is broken. The for-each style of for
is also referred to as the enhanced for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

//Using for loop

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;
for(int i=0; i < 10; i++) sum += nums[i];

//Using for-each loop

int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;
for(int x: nums) sum += x;

 JAVA PROGRAMMING(CS2205PC)

30

// Use a for-each style for on a 1D array.
class ForEach {
public static void main(String args[]) {
int nums[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
int sum = 0;
// use for-each style for to display and sum
the values
for(int x : nums) {
System.out.println("Value is: " + x);
sum += x;
}
System.out.println("Summation: " + sum);
}
}
Output:
Value is: 1
Value is: 2
Value is: 3
Value is: 4
Value is: 5
Value is: 6
Value is: 7
Value is: 8
Value is: 9
Value is: 10
Summation: 55

// Use for-each style for on a 2D array
class ForEach3 {
public static void main(String args[]) {
int sum = 0;
int nums[][] = new int[3][5];
// give nums some values
for(int i = 0; i < 3; i++)
for(int j=0; j < 5; j++)
nums[i][j] = (i+1)*(j+1);
// use for-each to display & sum the values
for(int x[] : nums) {
for(int y : x) {
System.out.println("Value is: " + y);
sum += y;
} }
System.out.println("Summation: " + sum);
} }
Output:
Value is: 1 Value is: 2 Value is: 3
Value is: 4 Value is: 5

Value is: 2 Value is: 4 Value is: 6
Value is: 8 Value is: 10

Value is: 3 Value is: 6 Value is: 9
Value is: 12 Value is: 15
Summation: 90

Nested Loops

One loop may be inside another.

Ex: Nested.java
class Nested
{
public static void main(String args[])
{

int i, j;
for(i=1; i<10; i++)
{

for(j=i; j<10; j++)
{
System.out.print(".");
}

System.out.println();
}

Output:
.........
........
.......
......
.....
....
...
..
.

}
}

 JAVA PROGRAMMING(CS2205PC)

31

Unconditional Control Statements
Java supports the following types of unconditional control statements.
1. break:
it is used to break any loop control statement or any switch control statement.
// Using break to exit a loop.

class BreakLoop {
public static void main(String args[]) {
for(int i=0; i<100; i++) {
if(i == 10) break; // terminate loop if i is 10
System.out.print(i+" "); }
System.out.print(" Loop complete.");
} }

Output: 0 1 2 3 4 5 6 7 8 9 Loop complete.

2. continue
it is used to skip the current iteration.

// Using continue to skip the current iteration
class BreakLoop {
public static void main(String args[]) {
for(int i=0; i<10; i++) {
if(i == 5) continue;
System.out.print(i+" ");
}
System.out.print(" Loop complete.");
} }

Output: 0 1 2 3 4 6 7 8 9 Loop complete.

3. goto:
The main drawback of goto statement in the c language is it decrease the readability of a
program to avoid that drawback. The goto in java is changed as goto break.
The syntax for the goto statement in java is:

Label:
{

Statements;
Break Label;

}
Example:
// Using break as a civilized form of goto.

class Break {
public static void main(String args[]) {
boolean t = true;
first:
{
second:
{
third:
{

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

System.out.println("Before the break.");
if(t) break second; // break out of second block
System.out.println("This won't execute");
}
System.out.println("This won't execute");
}
System.out.println("This is after second block.");
}
} }

Output:
Before the break.
This is after second block.

4. return:
The return control statement is used to jump the control from the called function to the calling
function.

Classes and Objects:
A class is a group of objects which have common properties. It is a template or blueprint from
which objects are created. It is a logical entity. It can't be physical. A class in Java can contain:

o fields

o methods

o constructors

o blocks

o nested class and interface

Declaring Member Variables
There are several kinds of variables:
• Member variables in a class—these are called fields.
• Variables in a method or block of code—these are called local variables.
• Variables in method declarations—these are called parameters.

Syntax to declare a class:
class <class_name>{

field;
method;

}

A class is declared by use of the class keyword
class classname
{
type instance-variable1;
type instance-variable2;
// ...
type instance-variableN;
type methodname1(parameter-list)
{
// body of method
}

type methodname2(parameter-list)
{
// body of method
}
// ...
type methodnameN(parameter-list)
{
// body of method
}
}

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

Example:
Class demo {

int x=1;;
int y=2;
float z=3;
void display()
{

System.out.println(―values are:‖+x+--y+--z);
}

}

The data, or variables, defined within a
class are called instance variables. The
code is contained within methods.
Collectively, the methods and variables
defined within a class are called
members of the class. Variables
defined within a class are called
instance variables.

OBJECTS:
An entity that has state and behavior is known as an object e.g. chair, bike, marker, pen, table,
car etc. It can be physical or logical (tangible and intangible). The example of intangible object is
banking system.

An object has three characteristics:

o state: represents data (value) of an object.
o behavior: represents the behavior (functionality) of an object such as deposit, withdraw

etc.
o identity: Object identity is typically implemented via a unique ID. The value of the ID is

not visible to the external user. But, it is used internally by the JVM to identify each
object uniquely.

For Example: Pen is an object. Its name is Reynolds, color is white etc. known as its state. It is
used to write, so writing is its behavior.

Object is an instance of a class. Class is a template or blueprint from which objects are created.
So object is the instance(result) of a class.

Object Definitions:
o Object is a real world entity.
o Object is a run time entity.
o Object is an entity which has state and behavior.
o Object is an instance of a class.

New keyword in Java
The new keyword is used to allocate memory at run time. All objects get memory in Heap
memory area.

Declaring Objects
When you create a class, you are creating a new data type. You can use this type to declare
objects of that type. However, obtaining objects of a class is a two-step process.

First, you must declare a variable of the class type. This variable does not define an object.
Instead, it is simply a variable that can refer to an object.

Second, you must acquire an actual, physical copy of the object and assign it to that variable.
You can do this using the new operator.

Demo d1 = new demo();

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

Object and Class Example: main within class
In this example, we have created a Student class that has two data members id and name. We are
creating the object of the Student class by new keyword and printing the objects value.
Here, we are creating main() method inside the class.

Student.java
class Student
{
int id;//field or data member or instance variable
String name;
public static void main(String args[])
{

Student s1=new Student();//creating an object of Student
System.out.println(s1.id);//accessing member through reference variable
System.out.println(s1.name);

}
}

Output:

Object and Class Example: main outside class
In real time development, we create classes and use it from another class. It is a better approach
than previous one. Let's see a simple example, where we are having main() method in another
class.

We can have multiple classes in different java files or single java file. If you define multiple
classes in a single java source file, it is a good idea to save the file name with the class name
which has main() method.

TestStudent1.java
class Student
{
int id;
String name;
}
class TestStudent1{
public static void main(String args[])
{
Student s1=new Student();
System.out.println(s1.id);
System.out.println(s1.name);
}
}

Output:
0
null

0
null

Three Ways to initialize object
There are 3 ways to initialize object in java.

 By reference variable
 By method
 By constructor

1) Object and Class Example: Initialization through reference

Initializing object simply means storing data into object. Let's see a simple example where we
are going to initialize object through reference variable.

TestStudent2.java
class Student{
int id;
String name;
}
class TestStudent2{
public static void main(String args[]){
Student s1=new Student();
s1.id=101;
s1.name="Sonoo";

System.out.println(s1.id+" "+s1.name);//
printing members with a white space
} }

Output:
101 Sonoo

We can also create multiple objects and
store information in it through reference
variable.

TestStudent3.java

class Student{
int id;
String name; }
class TestStudent3{
public static void main(String args[]) {
Student s1=new Student();
Student s2=new Student();
s1.id=101; //Initializing object
s1.name="Sonoo";
s2.id=102; //Initializing object
s2.name="Amit";
System.out.println(s1.id+" "+s1.name);
System.out.print(s2.id+" "+s2.name);
} }

Output:
101 Sonoo
102 Amit

2) Object and Class Example: Initialization through method
In this example, we are creating the two objects of Student class and initializing the value to
these objects by invoking the insertRecord method. Here, we are displaying the state (data) of
the objects by invoking the displayInformation() method.

TestStudent4.java
class Student{
int rollno;
String name;
void insertRecord(int r, String n){
rollno=r;
name=n;

}
void displayInformation(){System.out.pr
intln(rollno+" "+name);}
}
class TestStudent4{

public static void main(String args[]) {
Student s1=new Student();
Student s2=new Student();
s1.insertRecord(111,"Karan");
s2.insertRecord(222,"Aryan");
s1.displayInformation();
s2.displayInformation();
} }

Output:
111 Karan
222Aryan

 JAVA PROGRAMMING(CS2205PC)

As you can see in the above figure, object gets the memory in heap memory area. The reference
variable refers to the object allocated in the heap memory area. Here, s1 and s2 both are
reference variables that refer to the objects allocated in memory.

3) Object and Class Example: Initialization through constructor
We will learn about constructors in java later.

Arrays:
An array is a group of similar-typed variables that are referred to by a common name. Arrays of
any type can be created and may have one or more dimensions. A specific element in an array is
accessed by its index. Arrays offer a convenient means of grouping related information.

One-Dimensional Arrays
A one-dimensional array is a list of like-typed variables. To create an array, you first must create
an array variable of the desired type. The general form of a one dimensional array declaration is
type var-name[]; Here, type declares the base type of the array.

int month [];

Although this declaration establishes the fact that month is an array variable, no array actually
exists. In fact, the value of month is set to null, which represents an array with no value.

To link month with an actual, physical array of integers, you must allocate one using new and
assign it to month. new is a special operator that allocates memory.

The general form of new as it applies to one-dimensional arrays appears as follows:

array-var = new type[size];

Ex: month = new int[12];

After this statement executes, month will refer to an array of 12 integers. Further, all elements in
the array will be initialized to zero.

Another way to declare an array in single step is

type arr-name=new type[size];
Ex: int month = new int[12];

Arrays can be initialized when they are declared. For example, to store the number of days in
each month, we do as follows
Example Program1: // An improved version of the previous program.
class AutoArray
{

public static void main(String args[])
{
int month[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31,30, 31 };

System.out.println("April has " + month[3] + " days.");
}

}

When you run this program, in the output it prints the number of days in April. As mentioned,
Java array indexes start with zero, so the number of days in April has 30 days.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 37 Dr.Venkateswarulu, Assoc Prof

Example Program2: // Average an array of values.
class Average
{

public static void main(String args[])
{
double nums[] = {10.1, 11.2, 12.3, 13.4, 14.5};
double result = 0;

int i;
for(i=0; i<5; i++)
result = result + nums[i];
System.out.println("Average is " + result / 5);

}
}

Output: Average is:12.3

Multidimensional Arrays
In Java, multidimensional arrays are actually arrays of arrays. To declare a multidimensional
array variable, specify each additional index using another set of square brackets. For example,
the following declares a two-dimensional array variable called twoD.

int twoD[][] = new int[4][5];

Example Program:
// Demonstrate a two-dimensional array

class Testarray1
{
public static void main(String args[])
{

//declaring and initializing 2D array
int arr[][]={{1,2,3},{4,5,6},{7,8,9}};

//printing 2D array
for(int i=0;i<3;i++)
{

for(int j=0;j<3;j++)
{
System.out.print(arr[i][j]+" ");

}
System.out.println();

}
}
}

Output:

1 23
4 56
7 89

Example Program:
//Demonstrate a three-dimensional array.

class threeDMatrix
{

public static void main(String args[])
{

int threeD[][][] = new int[3][4][5];
int i, j, k;
for(i=0; i<3; i++)
for(j=0; j<4; j++)
for(k=0; k<5; k++)
threeD[i][j][k] = i * j * k;

for(i=0; i<2; i++)
{
for(j=0; j<2; j++)
{
for(k=0; k<3; k++)

System.out.print(threeD[i][j][k] + " ");
System.out.println();
}
System.out.println();
} } }

Output:
0 0 0 0 0 0
0 0 0 0 1 2

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 38 Dr.Venkateswarulu, Assoc Prof

We can create a three-dimensional array where first index specifies the number of tables,
second one number o0f rows and the third number of columns.

Alternative Array Declaration Syntax
There is a second form that may be used to declare an array:

type[] var-name;

For example, the following two declarations are equivalent:
int al[] = new int[3];
int[] a2 = new int[3];

Constructors:
Constructor is a special method of a class which is invoked automatically whenever an object is

created. It has same name that of a class. A constructor initializes an object immediately upon

creation. A constructor has no return type; not even void. It cannot be abstract, final, native
,static or synchronized. this keyword refers another constructor in same class. A super keyword
will call constructor of super class constructors are of two type

1. Default constructor

2.Parameterised constructor

1. Default constructor:
A constructor that accepts no parameters is called default constructor. If no constructor is defined
for a class java system automatically generates the default constructor. A default constructor is
called when an instance is created for a class. The default constructor automatically initializes
all instance variables to zero.

Example:
class demo
{
int x,y;
float z;
demo()
{
x=1;
y=2;
z=3;
}
void display()
{
System.out.println("Values of x, y and z are:"+x+" "+y+" "+z);
}
}
class Demomain
{
public static void main(String args[])
{
demo d1=new demo(); // this is a call for the above default constructor
d1.display();
}
}

Output: Values of x,y and z are: 1 2 3.0

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 39 Dr.Venkateswarulu, Assoc Prof

Parameterized constructor: A constructor that takes arguments as parameters is called as
parameterized constructor
class demo
{
int x;
int y;
float z;
demo(int x1,int y1,int z1)
{
x=x1;

y=y1;
z=z1;
}
void display()
{

Java Copy Constructor

System.out.println("Values of x, y and z
are:"+x+" "+y+" "+z);
}
}
class Demomain1
{
public static void main(String args[])
{
demo d1=new demo(1,2,3); // this is a call
for the above parameterized constructor
d1.display();
}
}Output: Values of x,y and z are: 1 2 3.0

There is no copy constructor in java. But, we can copy the values of one object to another like
copy constructor in C++. There are many ways to copy the values of one object into another in
java. They are:

 By constructor
 By assigning the values of one object into another
 By clone() method of Object class

In this example, we are going to copy the values of one object into another using java
constructor.

Example:
class Student6{

int id;
String name;
Student6(int i,String n){
id = i;
name = n;
}
Student6(Student6 s){
id = s.id;
name =s.name;
}

void display()

{
System.out.println(id+" "+name); }
public static void main(String args[])
{
Student6 s1 = new Student6(111,"Karan");
Student6 s2 = new Student6(s1);

s1.display();
s2.display();

} }
Output: 111 Karan

111 Karan

Methods:

Method is an action required by an object. Methods allow the programmer to modularize the
program. All variables declared in method definitions are local variables. That means they are
known only in the method in which they are defined. Most methods have a list of parameters that
provide the means for communicating information between the methods. A methods parameters
are also local variables.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 40 Dr.Venkateswarulu, Assoc Prof

There are several motivations for modularizing a program with methods.
 The divide and conquer approach makes program development more manageable.
 Another motivation is reusability. That means using existing methods as building blocks to

create new programs.
 A third motivation is to avoid repeating code in a program.
 Packaging code as a method allows that code to be executed from several locations in a

program simply by calling the method

Procedure:
• The only required elements of a method declaration are the method's return type, name, a pair

of parentheses, (), and a body between braces, {}.

• Two of the components of a method declaration comprise the method signature - the method's

name and the parameter types.

More generally, method declarations have six components, in order:

• Modifiers: such as public, private, and others you will learn about later.

• The return type: the data type of the value returned by the method, or void if the method
does not return a value.

• The method name: the rules for field names apply to method names as well, but the
convention is a little different.

• The parameter list in parenthesis: a comma-delimited list of input parameters, preceded by
their data types, enclosed by parentheses, (). If there are no parameters, you must use empty
parentheses.

• The method body, enclosed between braces: the method's code, including the declaration
of local variables, goes here.

Naming a Method
Although a method name can be any legal identifier, code conventions restrict method names. By
convention, method names should be a verb in lowercase or a multi-word name that begins
with a verb in lowercase, followed by adjectives, nouns, etc. In multi-word names, the first
letter of each of the second and following words should be capitalized. Here are some
examples:
run
runFast
getBackground
getFinalData

Typically, a method has a unique name within its class. However, a method might have the same
name as other methods due to method overloading.

Parameter Passing:

Call by Value and Call by Reference in Java
There is only call by value in java, not call by reference. If we call a method passing a value, it
is known as call by value. The changes being done in the called method, is not affected in the
calling method.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 41 Dr.Venkateswarulu, Assoc Prof

Example of call by value in java

Another Example: // Objects are passed by reference to achieve the concept of call-by-
reference in JAVA
class Test {

int a, b;

Test(int i, int j) {

a = i;

b = j;

}

// pass an object

void meth(Test o) {

*= 2;

/= 2;

}

}

class CallByRef {

public static void main(String args[]) {

Test ob = new Test(15, 20);

System.out.println("ob.a and ob.b before call: " +ob.a + " " + ob.b);

ob.meth(ob);

System.out.println("ob.a and ob.b after call: " +ob.a + " " + ob.b);

} }

Output:

ob.a and ob.b before call: 15 20

ob.a and ob.b after call: 30 10

In case of call by reference original value
is changed if we made changes in the
called method. In this example we are

passing object as a value. Example:
class Operation2{
int data=50;
void change(Operation2 op){
op.data=op.data+100;//changes will be

in the instance variable
}

public static void main(String args[]){
Operation2 op=new Operation2();

System.out.print("before:"+op.data);
op.change(op);//passing object

System.out.println("after:"+op.data);
} }

Output: before: 50
After: 150

In case of call by value original value is not
changed. Let's take a simple example:

class Operation{
int data=50;
void change(int data){

data=data+100;//changes will be in the local
variable only

}
public static void main(String args[]){
Operation op=new Operation();

System.out.println("before change "+op.data);
op.change(500);

System.out.println("after change "+op.data);
}

}
Output: before change 50

after change 50

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 42 Dr.Venkateswarulu, Assoc Prof

static : (constant / fixed)
It can be applied to data members, methods and some inner classes.

static data members :
1. static data members can be accessed by only static methods as well as non static.

2. static data members are not instance – specific. They are common to all objects of a class.

Therefore, they are known as class variables.

3. They are not destroyed between function calls.

4. They can be accessed directly with the class name. E.g., classname.variable_name;

5. For all objects of a class, only one copy of static members exists in memory and it is

shared by all objects. It is contrary to instance variables.

6. static variables are declared as static int x ;

static methods :
1. static method is a method whose definition is preceded by keyword static.
2. static methods can act upon only static variables.
3. static method can be called directly using class name without creating object.
4. The keyword “this” can‟ t be used inside a static method, as static members don‘ t belongs
to any particular object.
5. A static method can call only other static methods .

static block:
1. It is a piece of code enclosed in braces preceded by the keyword static.
2. static block is executed even before main() .
3. It is used to initialize some variables or any such things.
4. It can use only static variables & call only static methods.

The following example shows a class that has a static method, some static variables, and a static

initialization block:

// Demonstrate static variables, methods, and blocks: UseStatic.java

class UseStatic {
static int a = 3; static int b;
static void math(int x) {
System.out.println("x = " + x);
System.out.println("a = " + a);
System.out.println("b = " + b);
}
static { //Static block
System.out.println("Staticblock initialized.");
b = a * 4;
}
public static void main(String args[]) {
math(42);
} }

Syntax:
static
{
statements;

}

Output:

x=42

a=3

b=12

To call a static method from outside its class, use following general form:

classname.method()

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 43 Dr.Venkateswarulu, Assoc Prof

Here is an example. Inside main(), the static method callme() and the static variable b are
accessed through their class name StaticDemo.

Ex: StaticByName.java

class StaticDemo {

static int a = 42;

static int b = 99;

static void callme() {

System.out.println("a = " + a);

}

}

class StaticByName {

Concrete class: (real / actual)

public static void main(String args[]) {

StaticDemo.callme();

System.out.println("b = " + StaticDemo.b);

}
}

Output:
a = 42

b = 99

Any class that can be instantiated is known as concrete class. All non-abstract class is nothing
but concrete classes.

Sno Constructor Method
1 Creates an instance of a class Group of statements

2 Cannot be abstract ,final,static,native or

synchronized

Can be final , abstract,static, native or

synchronized

3 NO return type not even void Will have all possible return types

including void

4 Has same that of a class Can be given any valid name

5 this keyword Refers another constructor

in the same class.

this keyword refers to an instance of the

class . cannot be used with static methods

6 Super keyword is used ot call constructor

of super class

super calls the super class overridden

method

7 By default no arguments are supplied to

constructor

No default supply of arguments

Sno Instance method Static method
1 Instance methods perform an operation

on individual objects of a class

Static methods perform an operation for

entire class

2 Instance methods uses instance variable

of that object

Static method do not use instance variable

of object of the class

3 Instance method in invoked by an object

variable followed by dot operator

followed by method name

Static method in invoked by Class name

followed by dot operator followed by

method name

4 Instance method cannot be invoked

unless an instance of the class has already

created

Static methods can be invoked without

creating an instance of the class

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 44 Dr.Venkateswarulu, Assoc Prof

Access Specifiers:

There are 4 types of java access modifiers: private, public, protected and default

Access Specifiers are the keywords that alter the meaning and accessibility (scope) of a data
member of a class, method or constructor. They are, private, public, protected and default.
There are many non-access modifiers such as static, final, abstract, native, synchronized,
transient and volatile.

private:
It can be applied to variables and methods. Private members of a class are accessible from
within the class only. They cannot be accessed from outside the class and its subclass.

Ex: class A
{
private int data=40;
private void msg(){System.out.println("Hello java");}
}
public class Simple

{
public static void main(String args[])
{

A obj=new A();
System.out.println(obj.data);//Compile Time Error
obj.msg();//Compile Time Error

}

}
Output: compile time error

Role of Private Constructor: If you make any class constructor private, you cannot create the
instance of that class from outside the class.

Ex: class A{
private A(){}//private constructor
void msg(){System.out.println("Hello java");}
}
public class Simple{
public static void main(String args[]){

A obj=new A();//Compile Time Error
} } Output: compile time error

Note: A class cannot be private or protected except nested class.

public:
It can be applied to variables (data members), methods and classes. Public member of class can
be accessed globally any other code. They can be accessed from outside the class and sub class.
A public class can be accessed from any package.

class Alpha
{
public int i;

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 45 Dr.Venkateswarulu, Assoc Prof

public void publicMethod()
{

System.out.println("in PublicMethod");
System.out.println("i="+i);

}
}
class Beta
{

public static void main(String args[])
{

Alpha a=new Alpha();
a.i=10;
a.publicMethod();

}
}
Output:
in PublicMethod
i=10

protected:
It can be applied to data members and methods. Protected member of a class can be accessed
from within the class, sub class in the same package and sub class in different package. It
cannot be accessed from a non-subclass in different package.

default: When no access specifier is mentioned for a data member, method or class. It assumes
default / friend. There are no keywords such as default or friend. The default / friend members
of a class can be accessed from anywhere except from sub class in different package and non-sub
class from different package. (Ex: Public access specifier program without public)

 Variable Method Class within
class

within
package

outside package
by subclass only

outside
package

private Y Y N Y N N N
public Y Y Y Y Y Y Y
protected Y Y N Y Y Y N
default Y Y Y Y Y N N
static Y Y Y - - - -
final Y Y Y - - - -

this Keyword:
Sometimes a method will need to refer to the object that invoked it. To allow this, Java defines

the this keyword. this can be used inside any method to refer to the current object. That is, this

is always a reference to the object on which the method was invoked.

For example, if you have an Employee class with members 'firstName' and 'lastName' and let's

say you have a private method that formats a full name everytime there is a change in either the

first name or the last name. Then the formatFullName method can access the mebers using 'this'

keyword as follows:

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 46 Dr.Venkateswarulu, Assoc Prof

private void formatFullName()
{

this.fullName = String.format("%s %s", this.firstName, this.lastName);
}
Example 1:
class demo
{
int x;
int y;
float z;
demo(int x,int y,int z)
{
this.x=x;
this.y=y;
this.z=z;

}
void display()
{

Output: Values of x, y and z are:1 2 3.0

Example 2:
class ThisRef
{

int age=40;
ThisRef(int age)
{
this.age = age;
System.out.println(age);

}

System.out.println("Values of x, y and z
are:"+x+" "+y+" "+z);
}
}
class Demomain2
{
public static void main(String args[])
{
demo d1=new demo(1,2,3); // this is a call
for the above parameterized constructor
d1.display();
} }

public static void main(String args[])
{

ThisRef s=new ThisRef(20);
System.out.print(s.age);

}
}
Op: 20

20 //without using this keyword 40

To differentiate between the local and instance variables we have used this keyword in the
constructor.

Garbage Collection
Garbage Collection is process of reclaiming the runtime unused memory automatically. In other
words, it is a way to destroy the unused objects. To do so, we were using free() function in C
language and delete() in C++. But, in java it is performed automatically. So, java provides
better memory management.

Advantage of Garbage Collection
o It makes java memory efficient because garbage collector removes the unreferenced objects

from heap memory.
o It is automatically done by the garbage collector(a part of JVM).

How can an object be unreferenced?
Object can be unreferenced using the following ways:

o By nulling the reference
o By assigning a reference to another
o By annonymous object

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 47 Dr.Venkateswarulu, Assoc Prof

1) By nulling a reference:
Employee e=new Employee();
e=null;

2) By assigning a reference to another:
Employee e1=new Employee();
Employee e2=new Employee();
e1=e2;//now the first object referred by e1 is available for garbage collection

3) By annonymous object:
new Employee();

finalize() method
The finalize() method is invoked each time before the object is garbage collected. This method
can be used to perform cleanup processing. This method is defined in Object class as:

protected void finalize(){}

Note: The Garbage collector of JVM collects only those objects that are created by new

keyword. So if you have created any object without new, you can use finalize method to perform

cleanup processing (destroying remaining objects).

gc() method
The gc() method is used to invoke the garbage collector to perform cleanup processing. The gc()
is found in System and Runtime classes. public static void gc(){}

Simple Example of garbage collection in java
public class TestGarbage1{
public void finalize(){System.out.println("object is garbage collected");}
public static void main(String args[]){
TestGarbage1 s1=new TestGarbage1(); Output:

TestGarbage1 s2=new TestGarbage1(); object is garbage collected
s1=null; object is garbage collected
s2=null;
System.gc();

} }

Note: Garbage collection is performed by a daemon thread called Garbage Collector(GC).

This thread calls the finalize() method before object is garbage collected.

Method Overloading in Java

If a class has multiple methods by same name but different parameters, it is known as Method

Overloading. If we have to perform only one operation, having same name of the methods

increases the readability of the program.

Suppose we have to perform addition of the given numbers but there can be any number of

arguments, if you write the method such as a(int,int) for two parameters, and b(int,int,int) for

three parameters then it may be difficult for you as well as other programmers to understand

the behaviour of the method because its name differs.

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 48 Dr.Venkateswarulu, Assoc Prof

Different ways to overload the method
There are two ways to overload the method in java

1. By changing number of arguments
2. By changing the data type

Note: In java, Method Overloading is not possible by changing the return type of the
method.

In this example, we have created two In this example, we have created two
overloaded methods, first sum method
performs addition of two numbers and

overloaded methods that differ in data
type. The first sum method receives two

second sum method performs addition of integer arguments and second sum method
three numbers. receives two double arguments.

class Calculation{
void sum(int a,int b){

class Calculation2
{

System.out.println(a+b);} void sum(int a,int b)
void sum(int a,int b,int c){ {System.out.println(a+b);}

System.out.println(a+b+c);} void sum(double a,double b)
public static void main(String args[]){ {System.out.println(a+b); }
Calculation obj=new Calculation(); public static void main(String args[]){
obj.sum(10,10,10); Calculation2 obj=new Calculation2();
obj.sum(20,20); obj.sum(10.5,10.5);
} obj.sum(20,20);

} Output: 30
40

} } Output: 21.0
40

In java, method overloading is not possible by changing the return type of the method because
there may occur ambiguity. Let's see how ambiguity may occur:

class Calculation3{
int sum(int a,int b){System.out.println(a+b);}
double sum(int a,int b){System.out.println(a+b);}
public static void main(String args[]){
Calculation3 obj=new Calculation3();
int result=obj.sum(20,20); //Compile Time Error
} }

result=obj.sum(20,20); //Here how can java determine which sum() method should be called.

We can overload main() method in JAVA by using method overloading. You can have any
number of main methods in a class by method overloading. Let's see the simple example:

class Overloading1{
public static void main(int a)
{
System.out.println(a);
}
public static void main(String args[])
{

System.out.println("main() method invoked");
main(10);

}
}

Output: main() method invoked

10

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 49 Dr.Venkateswarulu, Assoc Prof

Constructor Overloading in Java
Constructor overloading is a technique in Java in which a class can have any number of
constructors that differ in parameter lists. The compiler differentiates these constructors by
taking into account the number of parameters in the list and their type.

Example of Constructor Overloading

class Student5{
int id;
String name;
int age;
Student5(int i,String n){
id = i;
name = n;
}
Student5(int i,String n,int a){
id = i;
name = n;
age=a;
}
void display()

Recursion:

{
System.out.println(id+" "+name+" "+age);

}
public static void main(String args[])
{

Student5 s1 = new Student5(11,"MRCET");
Student5 s2 = new Student5(22,"CSE",25);

s1.display();
s2.display();
}

}
Output:

11 MRCET 0
22 CSE 25

Java supports recursion. Recursion is the process of defining something in terms of itself. As it
relates to Java programming, recursion is the attribute that allows a method to call itself.
A method that calls itself is said to be recursive.

Example: Write a program to display // recursive declaration of method
Fibonacci series without using Recursion. fibonacci

public class Fib public class MainClass1 {
{ public static long fib(long no)
public static void main(String args[]){ {

String n1; if ((no == 0) || (no == 1))
int f1=0,f2=1,n,i,f3; return no;
n1="5"; else
n=Integer.parseInt(n1); // recursion step

System.out.println("Series\n"+f1+"\n"+f2); return fib(no - 1) + fib(no - 2);
for(i=1;i<n;i++) }
{ public static void main(String[] args)

f3=f1+f2; {
System.out.println(f3); System.out.printf("Fibonacci of 10:\n");
f1=f2; for (int coun = 0; coun < 10; coun++)

f2=f3; System.out.printf("%d\t", fib(coun));
} }

} }
}

Output: Fibonacci of 10:
Output: Series: 0 1 1 2 3 5 0 1 1 2 3 5 8 13 21 34

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 50 Dr.Venkateswarulu, Assoc Prof

Example: Factorial of a number using Recursion.
The factorial of a number N is the product of all the whole numbers between 1 and N. For
example, 3 factorial is 1 × 2 × 3, or 6.
class Factorial {
int fact(int n) { // this is a recursive method

Factorial f = new Factorial();
System.out.println("Fact of 3 is " + f.fact(3));

int result; System.out.println("Fact of 4 is " + f.fact(4));
if(n==1) return 1; System.out.println("Fact of 5 is " + f.fact(5));
result = fact(n-1) * n; }
return result; }
} Output:
}
class Recursion {
public static void main(String args[]) {

Factorial of 3 is 6
Factorial of 4 is 24
Factorial of 5 is 120

BufferedReader class (or) Console Input and Output:
In Java, console input is accomplished by reading from System.in or reading data from
keyboard. To obtain a character-based stream that is attached to the console, wrap System.in in
a BufferedReader object. BufferedReader supports a buffered input stream. Reader is an
abstract class. One of its concrete subclasses is InputStreamReader, which converts bytes to
characters.

To obtain an InputStreamReader object that is linked to System.in, the following line of code
creates a BufferedReader that is connected to the keyboard:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));

After this statement executes, br is a character-based stream that is linked to the console through
System.in.

Reading Characters
To read a character from a BufferedReader, use read(). The version of read() that we will be
using is int read() throws IOException. Each time that read() is called, it reads a character
from the input stream and returns it as an integer value. It returns – 1 when the end of the stream
is encountered. As you can see, it can throw an IOException.

Example Program: // Use a BufferedReader to read characters from the console.
import java.io.*;
class BRRead {
public static void main(String args[]) throws IOException
{
char c;
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
System.out.println("Enter characters, 'q' to quit.");
do { // read characters
c = (char) br.read();
System.out.println(c);
} while(c != 'q');
}
}

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 51 Dr.Venkateswarulu, Assoc Prof

Note: This output may look a little different from what you expected, because System.in is line
buffered, by default. This means that no input is actually passed to the program until you press
ENTER.

Reading Strings
To read a string from the keyboard, use the version of readLine() that is a member of the
BufferedReader class. Its general form is shown here:

String readLine() throws IOException

The following program demonstrates BufferedReader and the readLine() method;
The program reads and displays lines of text until you enter the word ―stop‖:
Example Program: // Read a string from console using a BufferedReader
import java.io.*;
class BRReadLines {
public static void main(String args[])
throws IOException
{
// create a BufferedReader using System.in
BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str;
System.out.println("Enter lines of text.");
System.out.println("Enter 'stop' to quit.");
do {
str = br.readLine();
System.out.println(str);
} while(!str.equals("stop"));
}
}

Java Scanner class
There are various ways to read input from the keyboard, the java.util.Scanner class is one of
them. The Java Scanner class breaks the input into tokens using a delimiter that is whitespace
bydefault. It provides many methods to read and parse various primitive values.

Java Scanner class is widely used to parse text for string and primitive types using regular
expression.

Java Scanner class extends Object class and implements Iterator and Closeable interfaces.

There is a list of commonly used Scanner class methods:
Method Description
public String next() it returns the next token from the scanner.
public String nextLine() it moves the scanner position to the next line and returns the value

as a string.
public byte nextByte() it scans the next token as a byte.
public short nextShort() it scans the next token as a short value.
public int nextInt() it scans the next token as an int value.
public double nextDouble() it scans the next token as a double value.
public float nextDouble() it scans the next token as a float value.

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 52 Dr.Venkateswarulu, Assoc Prof

Java Scanner Example to get input from console
Simple example of the Java Scanner class which reads the int, string & double value as an input:

import java.util.Scanner;

class ScannerTest

{

public static void main(String args[])

{

Scanner sc=new Scanner(System.in);

System.out.println("Enter your rollno");

int rollno=sc.nextInt();

System.out.println("Enter your name");

Output:

String name=sc.next();

System.out.println("Enter your fee");

double fee=sc.nextDouble();

System.out.println("Rollno:"+rollno+

" name:"+name+" fee:"+fee);

sc.close();

}

}

Strings:

Java String provides a lot of concepts that can be performed on a string such as compare,
concat, equals, split, length, replace, compareTo, intern, substring etc.

In java, string is basically an object that represents sequence of char values. An array of
characters works same as java string. For example:

char[] ch={'j','a','v','a','t','p','o','i','n','t'};
String s=new String(ch);

Above code is same as: String s="javatpoint";

The java String is immutable i.e. it cannot be changed but a new instance is created. For
mutable class, you can use StringBuffer and StringBuilder class.

What is String in java
Generally, string is a sequence of characters. But in java, string is an object that represents a
sequence of characters. String class is used to create string object.

There are two ways to create String object:
1. By string literal
2. By new keyword

1) String Literal
Java String literal is created by using double quotes.

For Example:

String s="welcome";

Enter your rollno
111
Enter your name
Kalpana
Enter
450000
Rollno:111 name:Kalpana fee:450000

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 53 Dr.Venkateswarulu, Assoc Prof

In the beside example only one object will

be created. Firstly JVM will not find any

string object with the value "Welcome" in

string constant pool, so it will create a new

object. After that it will find the string

with the value "Welcome" in the pool, it

will not create new object but will return

the reference to the same instance.

Each time you create a string literal, the JVM checks the string constant pool first. If the
string already exists in the pool, a reference to the pooled instance is returned. If string
doesn't exist in the pool, a new string instance is created and placed in the pool. For example:

String s1="Welcome";
String s2="Welcome"; //will not create new instance

Note: String objects are stored in a special memory area known as string constant pool.

Java has more memory efficient, because no new objects are created if it exists already in string
constant pool.

2) By new keyword
String s=new String("Welcome"); //creates two objects and one reference variable

Java String Example
public class StringExample{
public static void main(String args[]){
String s1="java";//creating string by java string literal
char ch[]={'s','t','r','i','n','g','s'};
String s2=new String(ch); //converting char array to string
String s3=new String("example"); //creating java string by new keyword
System.out.println(s1);
System.out.println(s2);
System.out.println(s3);
}}

Difference between StringBuffer and StringBuilder
There are many differences between StringBuffer and StringBuilder. A list of differences
between StringBuffer and StringBuilder are given below:

No. StringBuffer StringBuilder

1) StringBuffer is synchronized i.e.
thread safe. It means two threads
can't call the methods of
StringBuffer simultaneously.

StringBuilder is non-synchronized i.e.
not thread safe. It means two threads can
call the methods of StringBuilder
simultaneously.

2) StringBuffer is less efficient than
StringBuilder.

StringBuilder
StringBuffer.

is more efficient than

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 54 Dr.Venkateswarulu, Assoc Prof

StringBuilder Example
public class BuilderTest{
public static void main(String[] args) {
StringBuilder builder=new StringBuilder("hello");

builder.append("java");
System.out.println(builder);

}
}
OP: hellojava

StringBuffer Example
public class BufferTest{
public static void main(String[] args) {
StringBuffer buffer=new StringBuffer("hello");

buffer.append("java");
System.out.println(buffer);

}
}

OP: hellojava

Immutable String in Java
In java, string objects are immutable. Immutable simply means unmodifiable or
unchangeable. Let's try to understand the immutability concept by the example given below:

class Testimmutablestring{
public static void main(String args[]){

String s="Sachin";
s.concat(" Tendulkar"); //concat() method appends the string at the end
System.out.println(s); //will print Sachin because strings are immutable objects

} }
Output: Sachin

String Handling Methods:

String compare by compareTo() method
The String compareTo() method compares values lexicographically and returns an integer value
that describes if first string is less than, equal to or greater than second string.
Suppose s1 and s2 are two string variables. If:

s1 == s2 :0 s1 > s2 :positive value s1 < s2 :negative value

String compare by compareTo method

class Teststringcomparison4
{
public static void main(String args[])
{

String s1="
kalpana"; String s2="
kalpana"; String
s3="Mrcet";

System.out.println(s1.compareTo(s2));//0
System.out.println(s1.compareTo(s3));

//1(because s1>s3)
System.out.println(s3.compareTo(s1));

//-1(because s3 < s1)
System.out.println(s1.equals(s2));//true
}
}

Output: 0 1 -1 true

String compare by == operator

The = = operator compares references not values.

class Teststringcomparison3
{
public static void main(String args[])
{

String s1="Sachin";
String s2="Sachin";
String s3=new String("Sachin");
System.out.println(s1==s2);//true (because

both refer to same instance)
System.out.println(s1==s3);//false(because s

3 refers to instance created in nonpool)
}
}

Output: true
false

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 55 Dr.Venkateswarulu, Assoc Prof

String Concatenation by + (string concatenation) operator
In java, string concatenation forms a new string that is the combination of multiple strings. There
are two ways to concat string in java:

1. By + (string concatenation) operator
2. By concat() method

Java string concatenation operator (+) is used to add strings. For Example:
class TestStringConcatenation1{
public static void main(String args[]){

String s="Kalpana"+" Java";
System.out.println(s); // Kalpana Java

}
}

Output: Sachin Tendulkar

For example concat():
class Testimmutablestring1{
public static void main(String args[]){
String s="Kalpana";
s=s.concat(" Java");
System.out.println(s);

}
}

Output: Kalpana Java

Substring in Java
A part of string is called substring.

In case of string:
o startIndex: inclusive
o endIndex: exclusive

Let's understand the startIndex and endIndex by the code given below.
String s="hello";
System.out.println(s.substring(0,2));//he

In the above substring, 0 points to h but 2 points to e (because end index is exclusive).

Example of java substring
public class TestSubstring{
public static void main(String args[]){
String s="Sachin Tendulkar";
System.out.println(s.substring(6));//Tendulkar
System.out.println(s.substring(0,6));//Sachin

}
}

Output:
Tendulkar
Sachin

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 56 Dr.Venkateswarulu, Assoc Prof

Java String toUpperCase() and toLowerCase() method

The java string toUpperCase() method converts this string into uppercase letter and string
toLowerCase() method into lowercase letter.

String s="Kalpana";

System.out.println(s.toUpperCase());//KALPANA

System.out.println(s.toLowerCase());//kalpana

System.out.println(s); // Kalpana (no change in original)

Java String trim() method
The string trim() method eliminates white spaces before and after string.

String s=" Kalpana ";

System.out.println(s); // Kalpana

System.out.println(s.trim()); //Kalpana

Java String startsWith() and endsWith() method
String s="Kalpana";

System.out.println(s.startsWith("Ka")); //true

System.out.println(s.endsWith("a")); //true

Java String charAt() method
The string charAt() method returns a character at specified index.

String s="Sachin";

System.out.println(s.charAt(0));//S

System.out.println(s.charAt(3));//h

Output:
S
h

Java String length() method
The string length() method returns length of the string.

String s="Kalpana ";

System.out.println(s.length());//7

Output:
7

Java String replace() method
The string replace() method replaces all occurrence of first sequence of character with second

sequence of character.

String s1="Java is a programming language. Java supports OOP features.";

String replaceString=s1.replace("Java","CPP"); //replaces all occurrences of "Java" to "CPP"

System.out.println(replaceString);

Output: CPP is a programming language. CPP supports OOP features.

http://www.javatpoint.com/opr/test.jsp?filename=Testmethodofstringclass3
http://www.javatpoint.com/opr/test.jsp?filename=Testmethodofstringclass4

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 57 Dr.Venkateswarulu, Assoc Prof

57

Syntax:
class Outer{
//code
class Inner{
//code
} } //object creation of inner class

Outer.Inner obj=Outerobject.new Inner();

Syntax of Inner class

class Java_Outer_class{
//code
class Java_Inner_class{
//code

}
}

StringTokenizer in Java
The java.util.StringTokenizer class allows you to break a string into tokens. It is simple way to
break string.

import java.util.StringTokenizer;
public class Simple
{

public static void main(String args[])
{
StringTokenizer st = new StringTokenizer("my name is kalpana"," ");
while (st.hasMoreTokens())
{
System.out.println(st.nextToken());
}

}
}

Output:
my
name
is
kalpana

boolean hasMoreTokens() : checks if there is more tokens available.

String nextToken() : returns the next token from the StringTokenizer object.
StringTokenizer(String str) : creates StringTokenizer with specified string.

Java Inner Class
Java inner class or nested class is a class i.e. declared inside the class or interface.

We use inner classes to logically group classes and interfaces in one place so that it can be more
readable and maintainable. Additionally, it can access all the members of outer class including
private data members and methods.

Advantage of java inner classes

There are basically three advantages of inner classes in java. They are as follows:
1) Nested classes represent a special type of relationship that is it can access all the members
(data members and methods) of outer class including private.
2) Nested classes are used to develop more readable and maintainable code because it
logically group classes and interfaces in one place only.
3) Code Optimization: It requires less code to write.

 JAVA PROGRAMMING(CS2205PC)

58

58

Java Member inner class example
In this example, we are creating msg() method in member inner class that is accessing the private data
member of outer class.

class TestOuter
{

private int data=30;
class Inner
{

void msg()
{

System.out.println("data is "+data);
}

}
public static void main(String args[])
{

TestOuter obj=new TestOuter();
TestOuter.Inner in=obj.new Inner();
in.msg();

}
}

Output:
data is 30

Internal working of Java member inner class
The java compiler creates two class files in case of inner class. The class file name of inner class is
"Outer$Inner".

 JAVA PROGRAMMING(CS2205PC)

59 Dept of CSE, NRCM 59 Dr.Venkateswarulu, Assoc Prof

59

UNIT II - Inheritance – Types of Inheritance, Member access rules, super keyword, and preventing
inheritance: final classes and methods.

Polymorphism – dynamic binding, method overriding, abstract classes and methods.

Interfaces- Interfaces Vs Abstract classes, defining an interface, implement interfaces,
accessing implementations through interface references, extending interface.

Packages- Defining, creating and accessing a package, Understanding CLASSPATH,
importing packages.

Inheritance

Inheritance can be defined as the process where one class acquires the properties methods
and fields of another. With the use of inheritance the information is made manageable in a
hierarchical order. The class which inherits the properties of other is known as subclass
derived class, child class and the class whose properties are inherited is known as super
class base class, parent class.

Inheritance is the mechanism of deriving new class from old one, old class is known as
super class and new class is known as subclass. The subclass inherits all of its instances
variables and methods defined by the super class and it also adds its own unique
elements. Thus we can say that subclass is specialized version of superclass.

Benefits of Java’s Inheritance
1. Reusability of code
2. Code Sharing
3. Consistency in using an interface

Classes
Superclass(Base Class) Subclass(Child Class)

It is a class from which other classes
can be derived.

It is a class that inherits some or all
members from superclass.

extends Keyword
extends is the keyword used to inherit the properties of a class. Below given is the syntax of
extends keyword.

class Super{
..... } Base Class

class Sub extends Super{

..... } Derived Class

Types of Inheritance in Java
There are various types of inheritance as demonstrated below

Single Level Inheritance:
When one base class is being inherited by one sub class then that kind of inheritance is known
as single level inheritance.

Multi Level Inheritance:
When a sub class is in turn being inherited then that kind of inheritance is known as multi level
inheritance.

Hierarchical Inheritance:
When a base class is being inherited by one or more sub class then that kind of inheritance is
known as hierarchical inheritance.

 JAVA PROGRAMMING(CS2205PC)

60 Dept of CSE, NRCM 60 Dr.Venkateswarulu, Assoc Prof

60

 JAVA PROGRAMMING(CS2205PC)
`

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

61

61 61

Multiple inheritance:
Deriving one subclass from more than one super classes is called multiple inheritance.

Eg. class A { statements ; }
class B { statements ; }
class C extends A, B { statements ; }

Note: Java does not support multiple inheritance with classes. But, it supports multiple
inheritance using interfaces.

Hybrid Inheritance: It is a combination of multiple and hierarchical inheritance.

HIERARCHICAL INHERITANCE

MULTIPLE INHERITANCE

A sub class uses the keyword “extends” to inherit a base class.

Example for Single Inheritance:
class x

System.out.println(b);
} }

{
int a;
void display() {

a=0;
System.out.println(a);

} }
class y extends x {

int b;
void show()

{
B=1;

class show_main
{

public static void main(String args[])
{

y y1=new y();
y1.display();
y1.show();

} }
Output:
0
1

Since the class y is inheriting class x, it is able to access the members of class x.
Hence the method display() can be invoked by the instance of the class y.

D

B C

A

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 62 Dr.Venkateswarulu, Assoc Prof

Example for multilevel inheritance:
class x
{
int a;

void display()
{

a=0;
System.out.println(a);

int c;
show1()
{

c=2;
System.out.println(c);

}
}

} class show_main
} {
class y extends x
{

int b;
void show()
{

B=1;
System.out.println(b);

public static void main(String args[])
{

z z1=new z();
z1.display();

z1.show();
}

}
} Output:

} 0
class z extends y 1
{ 2

Since class z is inheriting class y which is in turn a sub class of the class x, indirectly z can
access the members of class x. Hence the instance of class z can access the display () method in
class x, the show () method in class y.

Problems:
In java multiple level inheritance is not possible easily. We have to make use of a concept
called interfaces to achieve it.

Access Specifers:
Java provides many levels of protection to allow fine-grained control over the visibility of
variables and methods within classes, subclasses, and packages.

Classes and packages are both means of encapsulating and containing the name space and scope
of variables and methods. Packages act as containers for classes and other subordinate packages.

Classes act as containers for data and code. We can protect the data from unauthorized access.
To do this ,we are using access specifiers. An access specifier is a keyword that is used to
specify how to access a member of a class or the class itself. There are four access specifiers in
java:

• Public
• Private
• Protected
• Default
• Privateprotected

1. Private members can be accessed only within the class in which they are declared.
2. Protected members can be accessed inside the class in which they are declared and also in
the sub classes in the same package and sub classes in the other packages.
3. Default members are accessed by the methods in their own class and in the sub classes of
the same package.
4. Public members can be accessed anywhere.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

63 63

Variable “i” with no access modifier and we are using it in child class.

Program runs with no error in this case as members with default

access modifier can be used in child class

Example of Member Access and Inheritance

Case 1: Member Variables have no access modifier (default access modifier)

Output

Case2: Member Variables have public/protected access modifier. If a member of class is
declared as either public or protected than it can be accessed from child or inherited class.

Output: Value of j in Child Class is: 6

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

64 64

In the inherited class an attempt to modify the value of a private

variable is made which results in compile time error

Variable „j‟ is declared as Private in class inherit1 which

means it cannot be accessed outside the class scope.

 JAVA PROGRAMMING(CS2205PC)

Case3: Member Variables have private access modifier. If a member of class is declared as private

than it cannot be accessed outside the class not even in the inherited class.

Output:

Why multiple inheritance is not supported in java?
When a class extends multiple classes is known as multiple inheritance. To reduce the
complexity and simplify the language, multiple inheritance is not supported in java.

Consider a scenario where A, B and C are three classes. The C class inherits A and B classes. If
A and B classes have same method and you call it from child class object, there will be
ambiguity to call method of A or B class.

Since compile time errors are better than runtime errors, java renders compile time error if you
inherit 2 classes. So whether you have same method or different, there will be compile time
error now.

class A{
void msg(){System.out.println("Hello");}
}
class B{
void msg(){System.out.println("Welcome");}
}
class C extends A,B{//suppose if it were
public Static void main(String args[]){
C obj=new C();
obj.msg();//Now which msg() method would be invoked?

}
}

Output: Compile Time Error
Note: Multiple inheritance is not supported in java through class.

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

65 65

 JAVA PROGRAMMING(CS2205PC)

Super Keyword:
Whenever a sub class needs to refer to its immediate super class, we can use the super
keyword. Super has two general forms
• The first calls the super class constructor.
• The second is used to access a member of the super class that has been hidden by a
member of a sub class

Syntax:
A sub class can call a constructor defined by its super class by use of the following form
of super.

super(arg-list);
here arg-list specifies any arguments needed by the constructor in the super class .

The second form of super acts like a”this” keyword. The difference between “this” and
“super” is that “this” is used to refer the current object where as the super is used to refer
to the super class.

The usage has the following general form:
super.member;

Example:
class x
{

b=1;
}

 int a;
x()

void display()
{

}

{
a=0;

}
void display()
{

System.out.println(a);
}

super.display();
System.out.println(b);

}
}
class super_main
{

public static void main(String args[])
{

class y extends x
{

int b;
y()

}

}

y y1=new y();
y1.display();

{
super();

Output: 0 1

super is a reference variable that is used to refer immediate parent class object. Uses of
super keyword are as follows:
1. super() is used to invoke immediate parent class constructors
2. super is used to invoke immediate parent class method
3. super is used to refer immediate parent class variable

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

66
66 66

To print the value of Base class
variable in a child class use
super.variable name

This“i” will print

Value of local class

variable

Output:

Example:

Example to call Immediate Parent Class Constructor using super Keyword
The super() keyword can be used to invoke the Parent class constructor as shown in the example
below.

Output:

Dept of CSE, NRCM 67 Dr.Venkateswarulu, Assoc Prof

67

Same program as above but no super keyword is used.

You can see in the o/p below that compiler implicitly adds

the super() keyword and same output is seen.

Note: super() is added in each class constructor automatically by compiler. As default
constructor is provided by compiler automatically but it also adds super() for the first
statement. If you are creating your own constructor and you don‟t have super() as the first
statement, compiler will provide super() as the first statement of theconstructor.

Example where super() is provided by compiler

Output:

Preventing Inheritance:

Final Keyword: (last / concluding)

Final keyword can be used in the following ways:

Final Variable: Once a variable is declared as final, its value cannot be changed
during the scope of the program
Final Method: Method declared as final cannot be overridden
Final Class: A final class cannot be inherited

Using final with inheritance:
The keyword final has three uses.

• First it can be used to create the equivalent of a named constant.
• To prevent overriding.
• To prevent inheritance.

final data members:
Data member with final modifier becomes a constant.

Using final to prevent overriding:
To disallow a method from being overridden, specify final as a modifier at the start of the
declaration.

Methods declared as final cannot be overridden.

Syntax: final <return type> <method name> (argument list);
final returntype funname()
{ - - - - -

}

Using final to prevent inheritance:
Some times we may want to prevent a class from being inherited. In order to do this we
must precede the class declaration with final keyword.

Declaring a class as final implicitly declares all its methods as final. The final class can’ t
be sub classed or derived. This means that we can‟ t create a sub class from a final class.

Dept of CSE, NRCM 68 Dr.Venkateswarulu, Assoc Prof

68

Variable “i” is declared as final

In this code we are trying to

modify the value of a Final

Variable which will result in error

as shown in the output.

 JAVA PROGRAMMING(CS2205PC)

Example:
final class A { class
B extends A{

} }

The above code gives compile error. Because class A is a final class, which can‟ t be derived.

Example of Final Variable: Final variables work like const of C-language that can‟t be altered in
the whole program. That is, final variables once created can‟t be changed and they must be used
as it is by all the program code.

Output:

Example of Final Method:

Generally, a super class method can be overridden by the subclass if it wants a different
functionality. If the super class desires that the subclass should not override its method, it
declares the method as final. (it gives compilation error).

Dept of CSE, NRCM 69 Dr.Venkateswarulu, Assoc Prof

69

 JAVA PROGRAMMING(CS2205PC)

Output

Example of Final Class: If we want the class not be sub-classed(or extended) by any other
class, declare it final. Classes declared final can not be extended.

Output

Dept of CSE, NRCM 70 Dr.Venkateswarulu, Assoc Prof

70

 JAVA PROGRAMMING(CS2205PC)

Polymorphism
Polymorphism came from the two Greek words „poly‟ means many and „morphos‟ means
forms. If the same method has ability to take more than one form to perform several tasks
then it is called polymorphism.

It is of two types: Dynamic polymorphism and Static polymorphism.

Dynamic Polymorphism / Dynamic binding:
The polymorphism exhibited at run time is called dynamic polymorphism. In this dynamic
polymorphism a method call is linked with method body at the time of execution by JVM.
Java compiler does not know which method is called at the time of compilation. This is also
known as dynamic binding or run time polymorphism.

Method overloading and method overriding are examples of Dynamic Polymorphism in Java.

o Method Overloading: Writing two or
more methods with the same name, but
with a difference in the method
signatures is called method over loading.

Method signature represents the method
name along with the method parameters.
Method is called depending upon the
difference in the method signature. The
difference may be due to the following:

There is a difference in the no. of parameters.

void add (int a,int b)
void add (int a,int b,int c)

difference in the data types of parameters.

void add (int a,float b)
void add (double a,double b)

difference in the sequence of parameters.

void swap (int a,char b)
void swap (char a,int b)

//Dynamic polymorphism: Overloading
methods
class Sample
{ void add(int a,int b)

{ s
System.out.println ("sum of two="+ (a+b));

}
void add(int a,int b,int c) {

System.out.println("sum of 3="+ (a+b+c));
}
}
class OverLoad
{ public static void main(String[] args)

{ Sample s=new Sample ();
s.add (20, 25);
s.add (20, 25, 30);

} }
Output: sum of two=45

Sun of three=75

o Method Overriding: Writing two or more
methods in super & sub classes with same
name and same signatures is called
method overriding.

WAP that contains a super and sub class

which contains a method with same name

and same method signature, behavior of the

method is dynamically decided.

// Dynamic polymorphism: overriding of
methods

class Parent
{

void move()
{

System.out.println ("Parent can move");
}

}
class Child extends Parent
{

void move()
{

System.out.println ("Child can walk & run");
}

}
class OverRide

{
public static void main(String args[])
{

Parent a = new Parent ();
Parent b = new Child (); // Animal reference

but Dog object (Up casting)
a.move (); // runs method in Animal class
b.move (); //Runs method in Dog class
}

}
Output: Parent can move

Child can walk & run

Dept of CSE, NRCM 71 Dr.Venkateswarulu, Assoc Prof

71

 JAVA PROGRAMMING(CS2205PC)

Static Polymorphism: The polymorphism exhibited at compile time is called Static
polymorphism. Here the compiler knows which method is called at the compilation. This is
also called compile time polymorphism or static binding.
Achieving method overloading & method overriding using private, static and final

methods is an example of Static Polymorphism.

Write a program to illustrate static polymorphism.
//Static Polymorphism
class Parent
{ static void move ()

{ System.out.println ("Parent method");
}

}
class Child extends Parent
{ static void move ()

{ System.out.println ("Child method");
}

}
public class StaticPoly
{ public static void main(String args[])

{
Parent.move (); //Calling static method with class name
Child.move (); //Calling static method with class name

}
}

Output: Parent method
Child method

Runtime polymorphism or Dynamic Method Dispatch

Runtime polymorphism or Dynamic method dispatch is the mechanism by which a call to
an overridden method is resolved at runtime, rather than compile time. Dynamic method
dispatch is important because this is how Java implements run-time polymorphism.

Method to execution based upon the type of the object being referred to at the time the call
occurs. Thus, this determination is made at runtime. In this process, an overridden method is
called through the reference variable of a super class. The determination of the method to be
called is based on the object being referred to by the reference variable.

Let's first understand the upcasting before Runtime Polymorphism.

Upcasting
When reference variable of Parent class refers to the object of Child class, it is known as
upcasting.
For example:

Dept of CSE, NRCM 72 Dr.Venkateswarulu, Assoc Prof

In this example a reference

is created “Ref1” of type

parent1.

To call an overridden

method of any class this

reference variable is

assigned an object of that

class. For ex. To call sum()

method of child class Ref1

is assigned object c1 of

childclass.

 JAVA PROGRAMMING(CS2205PC)

class A{}
class B extends A{}
A a=new B();//upcasting

Example

Output

Real time example of Java Runtime Polymorphism
Consider a scenario; Bank is a class that provides method to get the rate of interest. But, rate of
interest may differ according to banks. For example, SBI, ICICI and AXIS banks could provide
8%, 7% and 9% rate of interest.

EX1: class Bank{
int getRateOfInterest(){return 0;}
}
class SBI extends Bank{
int getRateOfInterest(){return 8;}
}
class ICICI extends Bank{
int getRateOfInterest(){return 7;}
}
class AXIS extends Bank{
int getRateOfInterest(){return 9;}
}
class Test3{
public static void main(String args[]){
Bank b1=new SBI(); Bank b2=new ICICI(); Bank b3=new AXIS();
System.out.println("SBI Rate of Interest: "+b1.getRateOfInterest());
System.out.println("ICICI Rate of Interest: "+b2.getRateOfInterest());
System.out.println("AXIS Rate of Interest: "+b3.getRateOfInterest());
} }

Output: SBI Rate of Interest: 8 ICICI Rate of Interest: 7 AXIS Rate of Interest: 9

Rule: Runtime polymorphism can't be

achieved by data members.

Ex2:
class Bike{
int speedlimit=90;
}
class Honda3 extends Bike{
int speedlimit=150;

public static void main(String args[]){

Bike obj=new Honda3();
System.out.println(obj.speedlimit);//90

} Output:90

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

Difference between method overloading and method overriding in java
There are many differences between method overloading and method overriding in java. A
list of differences between method overloading and method overriding are given below:

No. Method Overloading Method Overriding

1) Method overloading is used to increase

the readability of the program.
Method overriding is used to provide

the specific implementation of the
method that is already provided by its
super class.

2) Method overloading is performed within

class.
Method overriding occurs in two

classes that have IS-A (inheritance)
relationship.

3) In case of
overloading, parameter

different.

method
must be

In case of method
overriding, parameter must be same.

4) Method overloading is the example
of compile time polymorphism.

Method overriding is the
of run time polymorphism.

example

5) In java, method overloading can't be
performed by changing return type of
the method only. Return type can be

same or different in method
overloading. But you must have to
change the parameter.

Return type must be same or

covariant in method overriding.

6) Java Method Overloading example
class OverloadingExample{
static int add(int a,int b){
return a+b;
}
static int add(int a,int b,int c){
return a+b+c;
} }

Java Method Overriding example
class Animal{

void eat(){System.out.println("eating...");
}

}
class Dog extends Animal{
void eat(){
System.out.println("eating bread...");} }

Abstraction in Java
Abstraction is a process of hiding the implementation details and showing only
functionality to the user. Another way, it shows only important things to the user and hides
the internal details for example sending sms, you just type the text and send the message.
You don't know the internal processing about the message delivery.

Ways to achieve Abstaction
There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)
2. Interface (100%)
3.

Note1: It can be applied to methods and classes. It cannot be used with data members.
Note2: It needs to be extended and its method implemented. It cannot be instantiated.

Abstract class in Java
A class that is declared with abstract keyword, It can have abstract and non-abstract methods

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM Dr.Venkateswarulu, Assoc Prof

File: TestBank.java

abstract class Bank{
abstract int getRateOfInterest();
}
class SBI extends Bank{
int getRateOfInterest(){return 7;}
}
class PNB extends Bank{
int getRateOfInterest(){return 5;}
}
class TestBank{
public static void main(String

args[]){
Bank b=new SBI();
int interest=b.getRateOfInterest();
System.out.println("Rate of Interest
is: "+interest+" %");
}}
Output: Rate of Interest is: 7 %

File: TestAbstraction1.java
abstract class Shape{
abstract void draw();
}
class Rectangle extends Shape{
void draw(){System.out.println("drawing rectangle");
}
}
class Circle1 extends Shape{
void draw(){System.out.println("drawing circle");}
}
class TestAbstraction1{
public static void main(String args[]){
Shape s=new Circle1();//In real scenario, object is pro
vided through method e.g. getShape() method
s.draw();
}
}
 Output: drawing circle

Example abstract class
abstract class A{}

1. Abstract class is a class that cannot be instantiated. (no creation of object).
2. It can be / must be inherited.
3. It can act as only base class in inheritance hierarchy. (levels)

Abstract method
A method that is declared as abstract and does not have implementation is known as

abstract method.
1. It is a method, which has no body (definition) in the base class. The body should be
implemented in the sub class only.
2. Any class with at least one abstract method should be declared as abstract.
3. If the sub class is not implementing an abstract method, its sub class has to implement it.

Example abstract method
abstract void printStatus(); //no body and abstract

Example of abstract class that has abstract method
In this example, Bike the abstract class that contains only one abstract method run. It
implementation is provided by the Honda class.

abstract class Parent{
abstract void run();
}

class Child extends Parent{
void run(){System.out.println("Child

calling..");}
public static void main(String args[]){

Parent obj = new Child();
obj.run();
}
}

Output: Child calling..

Note: With respect to a class,
abstract and final are exclusive.
They both cannot be applied to a
class of a time.

abstract final class A
{
}
(The above code is wrong)

 JAVA PROGRAMMING(CS2205PC)

75

Abstract class having constructor, data member, methods etc.
An abstract class can have data member, abstract method, method body, constructor and even
main() method.

File: TestAbstraction2.java
//example of abstract class that have method body
abstract class Bike{
Bike(){

System.out.println("bike is created");}

abstract void run();
void changeGear(){
System.out.println("gear changed");}

}
class Honda extends Bike{
void run(){

System.out.println("running safely..");}
}
class TestAbstraction2{
public static void main(String args[]){
Bike obj = new Honda();
obj.run();
obj.changeGear();
}

}
Output: bike is created

running safely..
gear changed

Interface in Java
An interface in java is a blueprint of a class. It has static constants and abstract methods only.
The interface in java is a mechanism to achieve fully abstraction. There can be only abstract
methods in the java interface not method body. It is used to achieve fully abstraction and
multiple inheritance in Java.

Java Interface also represents IS-A relationship.
It cannot be instantiated just like abstract class.

There are mainly three reasons to use interface. They are given below.
 It is used to achieve fully abstraction.
 By interface, we can support the functionality of multiple inheritance.
 It can be used to achieve loose coupling.

NOTE: The java compiler adds public and abstract keywords before the interface

method and public, static and final keywords before data members.

Understanding relationship between classes and interfaces

As shown in the figure given above, a class extends another class, an interface extends
another interface but a class implements an interface.

Rule: If there is any abstract method in

a class, that class must be abstract.

class Bike12{
abstract void run();
}

Output: compile time error

Rule: If you are extending any abstract

class that has abstract method, you

must either provide the implementation

of the method or make this class

abstract.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 76 Dr.Venkateswarulu, Assoc Prof

76 76 76

Simple example of Java interface
In this example, Printable interface have only one method, its implementation is provided in
the A class.

interface printable{
void print();
}
class A6 implements printable{
public void print(){System.out.println("Hello");}

public static void main(String args[]){
A6 obj = new A6();
obj.print();
}

}
Output: Hello

Multiple inheritance in Java by interface
If a class implements multiple interfaces, or an interface extends multiple interfaces i.e. known
as multiple inheritance.

interface Printable{
void print();
}

interface Showable{
void show();
}

class A7 implements Printable,Showable{
public void print(){System.out.println("Hello");}

public void show(){System.out.println("Welcome");}
public static void main(String args[]){
A7 obj = new A7();
obj.print();
obj.show();
} }

Output: Hello
Welcome

Interface inheritance
A class implements interface but one interface extends another interface .

interface Printable{
void print();
}
interface Showable extends Printable{
void show();
}
class Testinterface2 implements Showable{

public void print(){System.out.println("Hello");}
public void show(){System.out.println("Welcome");}
public static void main(String args[]){
Testinterface2 obj = new Testinterface2();
obj.print();
obj.show(); Output: Hello
} } Welcome

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 77 Dr.Venkateswarulu, Assoc Prof

77

A programmer uses an abstract class when there are some common features shared by all
the objects. Interfaces are written when the programmer wants to leave the implementation to
third party vendors. An interface is a specification of method prototypes. All the methods in an
interface are abstract methods.

 An interface is a specification of method prototypes.
 An interface contains zero or more abstract methods.
 All the methods of interface are public, abstract by default.
 Once an interface is written any third party vendor can implement it.
 All the methods of the interface should be implemented in its implementation classes.
 If any one of the method is not implemented, then that implementation class

should be declared as abstract.
 We cannot create an object to an interface.
 We can create a reference variable to an interface.
 An interface cannot implement another interface.
 An interface can extend another interface.
 A class can implement multiple interfaces.

Defining an interface:

An interface is defined much like a class.

This is the general form of an interface:

access interface name
{

return-type method-name1(parameter-list);
return-type method-name2(parameter-list);
type final-varname1 = value;
type final-varname2 = value;
// ...
return-type method-nameN(parameter-list);
type final-varnameN = value;
}

Here is an example of an interface definition. It declares a simple interface that contains one
method called callback() that takes a single integer parameter.

interface Callback
{
void callback(int param);
}

Implementing Interfaces

Once an interface has been defined, one or more classes can implement that interface. The
general form of a class that includes the implements clause looks like this:

class classname [extends superclass] [implements interface [,interface...]]

{

// class-body

}

If a class implements more than one interface, the interfaces are separated with a comma. If a
class implements two interfaces that declare the same method, then the same method will be
used by clients of either interface. The methods that implement an interface must be declared
public.

78 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 78 Dr.Venkateswarulu, Assoc Prof

78 78

Accessing Implementations through Interface References:
You can declare variables as object references that use an interface rather than a class type. Any
instance of any class that implements the declared interface can be referred to by such a
variable. This is one of the key features of interfaces. The method to be executed is looked up
dynamically at run time, allowing classes to be created later than the code which calls methods
on them. The calling code can dispatch through an interface without having to know anything
about the “callee.”

The following example calls the callback() method via an interface reference variable:
class TestIface
{
public static void main(String args[])
{
Callback c = new Client();
c.callback(42);
}
}

Output: callback called with 42

// Another implementation of Callback.
class AnotherClient implements Callback
{

// Implement Callback's interface
public void callback(int p)
{
System.out.println("Another version of callback");
System.out.println("p squared is "+ (p*p));
}
}

Now, try the following class:
class TestIface2
{
public static void main(String args[])
{
Callback c = new Client();
AnotherClient ob = new AnotherClient();
c.callback(42);
c = ob; // c now refers to AnotherClient object
c.callback(42);
}
}

Output: callback called with 42

Another version of callback p
squared is 1764

As you can see, the version of callback() that is called is determined by the type of object
that c refers to at run time.

EXTENDING INTERFACES:

One interface can inherit another by use of the keyword extends. The syntax is the same as for
inheriting classes. When a class implements an interface that inherits another interface, it must
provide implementations for all methods defined within the interface inheritance chain.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 79 Dr.Venkateswarulu, Assoc Prof

79

Following is an example: // One interface can extend one or more interfaces..
interface A {

void meth1();
void meth2();
}

// B now includes meth1() and meth2() -- it adds meth3().
interface B extends A {
void meth3();
}
// This class must implement all of A and B
class MyClass implements B {
public void meth1() {
System.out.println("Implement meth1().");
}
public void meth2() {
System.out.println("Implement meth2().");
}
public void meth3() {
System.out.println("Implement meth3().");
}
}
class IFExtend {
public static void main(String arg[]) {
MyClass ob = new MyClass();
ob.meth1();
ob.meth2();
ob.meth3();
}
}

As an experiment, you might want to try removing the implementation for meth1() in MyClass.
This will cause a compile-time error. As stated earlier, any class that implements an interface
must implement all methods defined by that interface, including any that are inherited from
other interfaces.

Difference between abstract class and interface
Abstract class and interface both are used to achieve abstraction where we can declare the
abstract methods. Abstract class and interface both can't be instantiated. But there are many
differences between abstract class and interface that are given below.

Abstract class Interface

1) Abstract class can have abstract and non-
abstractmethods.

Interface can
abstract methods.

have only

2) Abstract class doesn't support multiple
inheritance.

Interface supports
inheritance.

multiple

3) Abstract class can have final, non-final,
static and non-static variables.

Interface has only static and final
variables.

4) Abstract class can have static methods,
main method and constructor.

Interface can't have static methods,
main method or constructor.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 80 Dr.Venkateswarulu, Assoc Prof

80

5) Abstract class can provide the Interface can't provide the
implementation of interface. implementation of abstract class.

6) The abstract keyword is used to declare
abstract class.

The interface keyword is used
declare interface.

to

7) Example: Example:
public abstract class Shape{ public interface Drawable{
public abstract void draw(); void draw();
} }

Simply, abstract class achieves partial abstraction (0 to 100%) whereas interface achieves fully
abstraction (100%).

Example of abstract class and interface in Java
//Creating interface that has 4 methods

interface A
{
void a();//bydefault, public and abstract
void b();
void c();
void d();
}
//Creating abstract class that provides the implementation of one method of A interface

abstract class B implements A
{

public void c(){System.out.println("I am C");
}

}
//Creating subclass of abstract class, now we need to provide the implementation of methods

class M extends B
{
public void a(){System.out.println("I am a");}
public void b(){System.out.println("I am b");}
public void d(){System.out.println("I am d");}
}
//Creating a test class that calls the methods of A interface
class Test5
{

public static void main(String args[])
{

A a=new M();
a.a();
a.b();
a.c();
a.d();

}
}

Output:
I am a I am b I am c I am d

http://www.javatpoint.com/opr/test.jsp?filename=Test5

 JAVA PROGRAMMING(CS2205PC)

81

Packages in JAVA:

Java provides a mechanism for partitioning the class name space into more manageable

chunks. This mechanism is the package. The package is both a naming and a visibility control

mechanism. You can define classes inside a package that are not accessible by code

outside that package. You can also define class members that are only exposed to other

members of the same package.

A java package is a group of similar types of classes, interfaces and sub-packages. Package

in java can be categorized in two form, built-in package and user-defined package.
There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they can be easily

maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

4) A group of package called a library. The classes and interfaces of a package are likes

books in a library and can be reused several times.

Defining a Package:

• Creating a package is quite easy: simply include a package command as the first
statement in a Java source file. Any classes declared within that file will belong to the
specified package. The package statement defines a name space in which classes are stored.

Creating a Package:
• The general form of the package statement:

package pkg; //Here, pkg is the name of the package.

• For example, the following statement creates a package called MyPackage.
package MyPackage;

The package keyword is used to create a package in java.

Java uses file system directories to store packages. For example, the .class files for any
classes you declare to be part of MyPackage must be stored in a directory called MyPackage.

Note: Remember that the directory name must match the package name exactly.

More than one file can include the same package statement. The package Statement simply
specifies to which package the classes defined in a file belong. You can create a hierarchy of
packages. To do so, simply separate each package name from the one above it by use of a
period.

•The general form of a multileveled package statement is shown here:
package pkg1[.pkg2[.pkg3]];

•A package hierarchy must be reflected in the file system of your Java development.

For example, a package declared as package java.awt.image; needs to be stored in
java:awt:image on your UNIX, Windows, or Macintosh file system, respectively.

•You cannot rename a package without renaming the directory in which the classes are stored.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 82 Dr.Venkateswarulu, Assoc Prof

82

//save as Simple.java
package mypack;
public class Simple{
public static void main(String args[]){

System.out.println("Welcome to package");
}

}
How to compile java package

If you are not using any IDE, you need to follow the syntax given below:
javac -d directory javafilename

For example: javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file. You can use
any directory name like /home (in case of Linux), d:/abc (in case of windows) etc. If you
want to keep the package within the same directory, you can use . (dot).

How to run java package program
You need to use fully qualified name e.g. mypack.Simple etc to run the class.

To Compile: javac -d . Simple.java

To Run: java mypack.Simple

Output: Welcome to package

Note: The -d is a switch that tells the compiler where to put the class file i.e. it represents
destination. The . represents the current folder.

How to access package from another package?

There are three ways to access the package from outside the package.
1. import package.*;
2. import package.classname;
3. fully qualified name.

1) Using packagename.*
If you use package.* then all the classes and interfaces of this package will be accessible but not
subpackages. The import keyword is used to make the classes and interface of another package
accessible to the current package.

Example of package that import the packagename.*
//save by A.java
package pack;
public class A{

public void msg(){System.out.println("
Hello");
} }

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 83 Dr.Venkateswarulu, Assoc Prof

83

//save by B.java
package mypack;
import pack.*;
class B{

public static void main(String args[]){ A obj = new A();
obj.msg();

}
} Output: Hello

2) Using packagename.classname
If you import package.classname then only declared class of this package will be accessible.
Example of package by import package.classname

//save by A.java
package pack;
public class A{

public void msg(){System.out.println("
Hello1");
}
}

//save by B.java
package mypack;
import pack.A;

class B1{
public static void main(String args[]){
A obj = new A();
obj.msg();
}

}

Output: Hello1

3) Using fully qualified name
If you use fully qualified name then only declared class of this package will be accessible. Now
there is no need to import. But you need to use fully qualified name every time when you are
accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util and java.sql
packages contain Date class.

Example of package by import fully qualified name
//save by A.java
package pack;
public class A{

public void msg(){System.out.println("Hello2"); }
}
//save by B.java
package mypack;
class B2{

public static void main(String args[]){
pack.A obj = new pack.A();//using fully qualified name
obj.msg();
}

}
Output: Hello

Note: If you import a package, subpackages will not be imported.

If you import a package, all the classes and interface of that package will be imported excluding
the classes and interfaces of the subpackages. Hence, you need to import the subpackage as
well.

javac -d . A.java
javac -d . B1.java
java mypack.B1

javac -d . A.java
javac -d . B.java
java mypack.B

javac -d . A.java
javac -d . B2.java
java mypack.B2

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 84 Dr.Venkateswarulu, Assoc Prof

84

For example, consider the following package specification:
package MyPack;

In order for a program to find MyPack, one of two things must be true. Either the program is
executed from a directory immediately above MyPack, or CLASSPATH must be set to include
the path to MyPack.

The first alternative is the easiest (and doesn„t require a change to CLASSPATH), but the
second alternative lets your program find MyPack no matter what directory the program is in.

Create the package directories below your current development directory, put the .class files
into the appropriate directories and then execute the programs.

Example:
// A simple package
package bal;
class Balance

{
String name;

double bal;
Balance(String n, double b)
{

name = n;
bal = b;
}
void show()
{
if(bal<0)
System.out.print("--> ");

System.out.println(name + ": $" + bal);
} }
class AccountBalance

{
public static void main(String args[])
{
Balance current[] = new Balance[3]; current[0]
= new Balance("Kalpana", 123.23); current[1] =
new Balance("Sudha", 157.02); current[2] =
new Balance("Varshi", -12.33);

for(int i=0; i<3; i++)
current[i].show();

}
}

Save this file as , and put it in a directory called MyPack. Next, compile the file. Make sure that
the resulting .class file is also in the MyPack directory. Executing the AccountBalance class,
using the following command line:

java bal.AccountBalance

Remember, we should be in the directory above MyPack when you execute this command, or to
have your CLASSPATH environmental variable set appropriately.

AccountBalance is now part of the package MyPack. This means that it cannot be executed

by itself. That is, you cannot use this command line:

java AccountBalance (AccountBalance must be qualified with its package name.)

Importing Packages:
Java includes the import statement to bring certain classes, or entire packages, into visibility.
The import statement is convenient. In a Java source file, import statements occur immediately
following the package statement (if it exists) and before any class definitions.

This is the general form of the import statement:
import pkg1[.pkg2].(classname|*);

Here, pkg1 is the name of a top-level package, and pkg2 is the name of a subordinate
package inside the outer package separated by a dot (.). Finally, you specify either an explicit
classname or a star (*), which indicates that the Java compiler should import the entire
package.

javac –d . AccountBalance.java
java bal.AccountBalance
OUTPUT:

Kalpana: $123.33
Sudha: $1577.02

-->Varshi: $-12,33

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 85 Dr.Venkateswarulu, Assoc Prof

85

Ex - This code fragment shows both forms in use:
import java.util.Date;
import java.io.*;

It is a good idea to explicitly name the classes that you want to use rather than importing whole
packages. However, the star form has absolutely no effect on the run-time performance or size
of your classes.

For example, /* Now, the Balance class, its constructor, and its show() method are public. This
means that they can be used by non-subclass code outside their package.*/

Balance.java

package bal;
public class Balance
{
String name;
double bal;
public Balance(String n, double b)
{
name = n;
bal = b;
}
public void show()
{
if(bal<0)
System.out.print("--> ");
System.out.println(name + ": $" + bal);
}
}

Java API Packages:

For example, here TestBalance imports
bal package and is then able to make use
of the Balance class: TestBalance.java

import bal.Balance;
class TestBalance
{
public static void main(String args[])
{
/* Because Balance is public, you may use Balance
class and call its constructor. */

Balance test = new Balance("Kalpana",
99.88);
test.show();
} }

Javac –d . Balance.java
Javac TestBalance.java
Java TestBalance
O/P; Kalpana: $99.88

Reuse of code is one of the important features of OOP. We can achieve this by extending the
classes and implementing the interfaces which we have created. But this is limited to reusing the
classes within a program. A package is a collection of classes and interfaces which provides a
high level access protection and name space management.

Java API packages or Java Built-in packages:
Java API provides a huge number of classes grouped into various packages according to

functionality. Now we will see important java API packages and the classes belonging to these
packages.

1. Java.lang: This package contains language support classes. These are the classes which
java compiler itself uses and therefore they are imported automatically. They include classes
for primitive types, math functions, strings, StringBuffer, StringTokenizer, threads and
exceptions.
2. Java.uitl: This package contains language utility classes like hash tables, vectors, date,
Stack, Random etc.,
3. Java.applet: This package contains classes for creating and implementing applets.
4. Java.net: This package contains classes for networking. They not only include classes for
communicating with local computers but also with internet services.
5. Java.awt: This package contains classes for implementing GUI. They include classes for
Frame, Graphics,Buttons, windows, lists etc.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 86 Dr.Venkateswarulu, Assoc Prof

86

6. Java.io: This package contains I/O support classes. They provide facilities for input and
output of data. They include classes for BufferedInputStream, BufferedOutputStream,
DataInputStream and DataOutputStream.
7. Javax.swing: this package helps to develop GUI like java.awt. The „x‟ in javax represents
that it is an extended package which means it is a package developed from another package
by adding new features to it. In fact, javax.swing is an extended package of java.awt.

User-Defined packages:
Just like the built in packages shown earlier, the users of the Java language can also create their
own packages. They are called user-defined packages. User-defined packages can also be
imported into other classes and used exactly in the same way as the Built-in packages.

Packages Examples:

Program 1: Write a program to create a package pack with Addition class.
//creating a package
package pack;
public class Addition
{ private double d1,d2;

public Addition(double a,double b)
{ d1 = a;

d2 = b;
}
public void sum()
{ System.out.println ("Sum of two given numbers is : " + (d1+d2));
}

}
Compiling the above program:

Program 2: Write a program to use the Addition class of package pack.

//Using the package pack
import pack.Addition; class
Use
{ public static void main(String args[])

{ Addition ob1 = new Addition(10,20);
ob1.sum();

}
}
Output:

Program 3: Write a program to add one more class Subtraction to the same package
pack.

//Adding one more class to package pack:
package pack;
public class Subtraction
{

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 87 Dr.Venkateswarulu, Assoc Prof

87

private double d1,d2;
public Subtraction(double a, double b)
{

d1 = a;
d2 = b;

}
public void difference()
{ System.out.println ("Sum of two given numbers is : " + (d1 - d2));
}

}
Compiling the above program:

Program 4: Write a program to access all the classes in the package pack.
//To import all the classes and interfaces in a class using import pack.*;
import pack.*;
class Use
{ public static void main(String args[])

{ Addition ob1 = new Addition(10.5,20.6);
ob1.sum();
Subtraction ob2 = new Subtraction(30.2,40.11);
ob2.difference();

}
}

UNDERSTANDING CLASSPATH:
If the package pack is available in different directory, in that case the compiler should be given
information regarding the package location by mentioning the directory name of the package in
the classpath.

The CLASSPATH is an environment variable that tells the Java compiler where to look for
class files to import.

If our package exists in e:\sub then we need to set class path as follows:

We are setting the classpath to e:\sub directory and current directory (.) an

%CLASSPATH% means retain the already available classpath as it is.

Creating Sub package in a package: We can create sub package in a package in the format:
package packagename.subpackagename;

.: package pack1.pack2;

Here, we are creating pack2 subpackage which is created inside pack1 package. To use the
classes and interfaces of pack2, we can write import statement as:

import pack1.pack2; Ex: import java.io.*;

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 88 Dr.Venkateswarulu, Assoc Prof

88

Program 5: Program to show how to create a subpackage in a package.

//Creating a subpackage in a package
package pack1.pack2;
public class Sample
{

public void show ()
{

System.out.println ("Hello Java Learners");
}

}

ACCESSING A PACKAGES:

Access Specifier: Specifies the scope of the data members, class and methods.

 private members of the class are available with in the class only. The scope of
private members of the class is “CLASS SCOPE”.

 public members of the class are available anywhere . The scope of public members
of the class is "GLOBAL SCOPE".

 default members of the class are available with in the class, outside the class and in its
sub class of same package. It is not available outside the package. So the
scope of default members of the class is "PACKAGE SCOPE".

 protected members of the class are available with in the class, outside the class and in
its sub class of same package and also available to subclasses in different package
also.

Another Simple example for Packages:

Op.java
package my;
public claa Op
{
public void add(int a,int b)

{
int c=a+b;
System.out.println(“Add:”+C);

}
}

Demo.java
import my.Op;
class Demo
{
public static void

main(String args[])
{

Op obj=new Op();
obj.add(10,20);
}

}

Compilation
javac –d . Op.java
javac Demo.java

Run
java Demo

Op:
Add:30

Dept of CSE, NRCM 89 Dr.Venkateswarulu, Assoc Prof

DIFFERENCES BETWEEN CLASSES AND INTERFACES:

Classes Interfaces
Classes have instances as variables and
methods with body

Interfaces have instances as abstract methods
and final constants variables.

Inheritance goes with extends keyword Inheritance goes with implements keywords.

The variables can have any acess specifier. The Variables should be public, static, final

Multiple inheritance is not possible It is possible

Classes are created by putting the keyword
class prior to classname.

Interfaces are created by putting the keyword
interface prior to interfacename(super class).

Classes contain any type of methods. Classes
may or may not provide the abstractions.

Interfaces contain mustly abstract methods.
Interfaces are exhibit the fully abstractions

Differences between object and class

SNo. Object Class

1)
Object is an instance of a class.

Class is a blueprint or template from
which objects are created.

2) Object is a real world entity such as
pen, laptop, mobile, bed, keyboard,
mouse, chair etc.

Class is a group of similar objects.

3) Object is a physical entity. Class is a logical entity.

4) Object is created through new
keyword mainly
e.g. Student s1=new Student();

Class is declared using class keyword
e.g. class Student{}

5) Object is created many times as per
requirement.

Class is declared once.

6) Object allocates memory when it is
created.

Class doesn't allocated memory when it
is created.

7) There are many ways to create
object in java such as new keyword,
newInstance() method, clone()
method, factory method and
deserialization.

There is only one way to define class in
java using class keyword.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 90 Dr.Venkateswarulu, Assoc Prof

UNIT III: Exception handling - Concepts of exception handling, benefits of exception
handling, exception hierarchy, usage of try, catch, throw, throws and finally, built in exceptions,
creating own exception sub classes.

Multi threading: Differences between multi threading and multitasking, thread life cycle,
creating threads, thread priorities, synchronizing threads, inter thread communication, daemon
threads.

Exceptions:
•An exception (or exceptional event) is a problem or an abnormal condition that arises during
the execution of a program or at run time. In other words an exception is a run time error.

When an Exception occurs the normal flow of the program is disrupted and the program
terminates abnormally, therefore these exceptions are to be handled. An exception can occur for
many different reasons, including the following:

• A user has entered invalid data.
• A file that needs to be opened cannot be found.
• A network connection has been lost in the middle of communications or the JVM

has run out of memory.
Some of these exceptions are caused by user error, others by programmer error, and others by
physical resources that have failed in some manner.

A java exception is an object that describes an exceptional condition that has occurred in a piece
of code. When an exceptional condition arises, an object representing that exception is created
and thrown in the method that caused the error. Now the exception is caught and processed.

Errors and Exception Handling
No matter how good a program we write it may cause the following types of errors.

1. Syntax Errors
2. Logical Errors
3. Runtime Errors

Syntax Errors: It is an error which occurs when the rules of language are violated . If we are not
following the rules, those cause the error. It can be easily detected and corrected by compilers.
Eg: Statement missing semicolon; , Missing/expected „ }‟ ,Un-defined symbol varname etc.

Logical Error: It is an error caused due to manual mistake in the logical expressions. These
errors cannot be detected by the compiler.
Eg. Netsal = (basic+da+hra) (+) pf

Runtime Error: It is an Error, which occurs after executing the program at runtime.
Eg. Divide by zero.

File not found
No disc in the drive etc.

Exception:
Exceptions are an unusual condition that occurs at runtime and can lead to errors that can crash a
program. It is nothing but runtime error. It can be handled to provide a suitable message to

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 91 Dr.Venkateswarulu, Assoc Prof

Exception Handler:
It is a piece of code; Exceptions are conditions within the code. A developer can handle such
conditions and take necessary corrective actions. Exception Handling is a mechanism to handle
runtime errors such as ClassNotFound, IO, SQL, Remote etc.

Advantage of Exception Handling
The core advantage of exception handling is to maintain the normal flow of the application.
Exception normally disrupts the normal flow of the application that is why we use exception
handling. Let's take a scenario:

statement 1;
statement 2;
statement 3;
statement 4;
statement 5;//exception occurs

statement 6;
statement 7;
statement 8;
statement 9;
statement 10;

Suppose there is 10 statements in your program and there occurs an exception at statement 5, rest
of the code will not be executed i.e. statement 6 to 10 will not run. If we perform exception
handling, rest of the statement will be executed.

It throws an exception whenever a calling method encounters an error providing that the calling
method takes care of that error.

It also gives us the scope of organizing and differentiating between different error types using a

separate block of codes. This is done with the help of try-catch blocks.

Hierarchy of Java Exception classes
All exception classes are subtypes of the java.lang.Exception class. The exception class is a
subclass of the Throwable class. Other than the exception class there is another subclass called
Error which is derived from the Throwable class.
The Exception class has two main subclasses: IOException class and RuntimeException Class.

 Page 2

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 92 Dr.Venkateswarulu, Assoc Prof

IOException:
It is an Exception class. It is a part of java.io packages. It is required to be caught in every

method when readLine() is used. Else throws class is used to mention IOException.

Runtime Exceptions: A runtime exception is an exception that occurs that probably could have
been avoided by the programmer. As opposed to checked exceptions, runtime exceptions are
ignored at the time of compilation.

Types of Exception
There are mainly two types of exceptions: checked and unchecked where error is considered as
unchecked exception. The sun microsystem says there are three types of exceptions:

1. Checked Exception
2. Unchecked Exception
3. Error

1) Checked Exception
The classes that extend Throwable class except RuntimeException and Error are known as
checked exceptions e.g.IOException, SQLException etc. Checked exceptions are checked at
compile-time.

2) Unchecked Exception
The classes that extend RuntimeException are known as unchecked exceptions e.g.
ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc. Unchecked
exceptions are not checked at compile-time rather they are checked at runtime.

3) Error
Error is irrecoverable
E.g. OutOfMemoryError, VirtualMachineError, AssertionError etc.

Differences between Checked and Unchecked Exceptions

Checked Exceptions Unchecked Exceptions
Checked Exceptions are the sub-class of the
Exception class

Unchecked Exceptions are the sub-class of
the Runtime Exceptions

In Checked Exceptions the Java Virtual
Machine requires the exception to be caught
or handled

In Unchecked Exceptions the Java Virtual
Machine does not require the exception to be
caught or handled

Checked Exceptions are checked at compile
time of the program

Unchecked Exceptions are checked at the run
time or during execution time of the program

Checked Exceptions can be created manually Unchecked Exceptions can be created
manually.

Checked Exceptions can be handled using
try, catch and finally

Unchecked Exceptions can be handled using
try, catch and finally

Checked Exceptions are mainly illegal path
or illegal use.

Unchecked Exceptions are mainly
programming mistakes or bad input

Checked Exceptions can be ignored in a
program

Unchecked Exceptions cannot be ignored in a

program.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 93 Dr.Venkateswarulu, Assoc Prof

Checked exceptions must be mentioned in
the throws clause of all methods in which
they could occur.

Unchecked exceptions usually not specified

in the throws clause of a method and it

mentioned in the try–catch-finally.

It uses Mainly when an exception occurs and

we know what we need to do and Where

chances of failure are greater.

It uses Business logic, Rules validation and

User input validation.

import java.io.*; class Example {
class Example { public static void main(String args[])

public static void main(String {
args[]) throws IOException try{

{ int arr[] ={1,2,3,4,5};
FileInputStream fis = null; System.out.println(arr[7]);
fis = new }

FileInputStream("B:/myfile.txt"); catch(ArrayIndexOutOfBoundsException e)
int k; {
while((k = fis.read()) != -1) { System.out.println("The specified index does

System.out.print((char)k); } not exist " +"in array. Please correct the
fis.close(); error.");

} } }
Output: }
File content is displayed on the screen. }

Exception class:
This is the generic catch because exception class can handle any kind of exception. Hence, it
should be kept at the end of all catches to ensure that no exception will go un-defined on running
the prg.

Built-in Exception classes:
Java defines several exception classes inside the standard package java.lang. The most general
of these exceptions are subclasses of the standard type RuntimeException. Since java.lang is
implicitly imported into all Java programs, most exceptions derived from RuntimeException are
automatically available.

Java defines several other types of exceptions that relate to its various class libraries. Following
is the list of Java Unchecked RuntimeException.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 94 Dr.Venkateswarulu, Assoc Prof

Following is the list of Java Checked Exceptions Defined in java.lang.

Common scenarios where exceptions may occur
There are given some scenarios where unchecked exceptions can occur. They are as follows:

1) Scenario where ArithmeticException occurs
If we divide any number by zero, there occurs an ArithmeticException.

int a=50/0;//ArithmeticException

2) Scenario where NullPointerException occurs
If we have null value in any variable, performing any operation by the variable occurs an
NullPointerException.
String s=null;
System.out.println(s.length());//NullPointerException

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 95 Dr.Venkateswarulu, Assoc Prof

3) Scenario where NumberFormatException occurs
The wrong formatting of any value, may occur NumberFormatException. Suppose I have a
string variable that have characters, converting this variable into digit will occur
NumberFormatException.
String s="abc";
int i=Integer.parseInt(s);//NumberFormatException

4) Scenario where ArrayIndexOutOfBoundsException occurs
If you are inserting any value in the wrong index, it would result
ArrayIndexOutOfBoundsException as shown below:
int a[]=new int[5];
a[10]=50; //ArrayIndexOutOfBoundsException

Exception Handling Mechanism in Java:
Java uses a mechanism or model to handle exceptions. This model is known as “catch and
throw model”. This means that “it identifies an exception and throws it and it will be caught by
exception handler”. This model used the following keywords.

Try, catch, throw, throws and finally

Try block:
All statements that are likely to raise an exception at run time are kept in try block. This block

will detect an exception and throws it. It will be handled by catch block.

Catch:
This block takes corrective steps when an exception is thrown. It provides a suitable message to
the user. Then user will be able to proceed with the application.

A try block can follow multiple catch blocks.

Throw:
It is used to throw an exception.

Throws:
It is used to specify the possible exceptions that are caused by a method. But not handled by the
method.

Finally:
This block is followed by catch block. This used to close files, data base connections etc. This
block is executed irrespective of whether exception occurs or not.

try{
//Do something

}
catch(Exception ex)
{

//Catch exception hare using exception argument ex
}

The code which is prone to exceptions is placed in the try block, when an exception occurs; that
exception occurred is handled by catch block associated with it.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 96 Dr.Venkateswarulu, Assoc Prof

Example:
class ExceptionSample {

public static void main (String[] arrgs) // Main function
{

int no1, no2; //Data variables
no1=5; //Contain some value
no2=0; //contain some value
try // Try block
{
System.out.println(no1/no2); //attempt to divide number by 0

}
catch (Exception ex) // Catch block receive exception
{/* Display exception message */ System.out.println("Error
with defination: "+ex.getMessage());
} } }

User-defined exception (or) Custom Exception (or) Own Exception:
The built-in exceptions do not meet our specific requirements. We can define our own exception
classes such exceptions are known, as user-defined exception must extend the base class
exception.

Syn.: class classname extends Exception
{

}
Example:

class InvalidAgeException extends Exception
{

InvalidAgeException(String s)
{

super(s);
}

}

class TestCustomException1
{
static void validate(int age)throws InvalidAg
eException
{

if(age<18)
throw new InvalidAgeException("not valid");

else

System.out.println("welcome to vote");
}

public static void main(String args[])
{

try
{
validate(13);
}
catch(Exception m)
{

System.out.println("Exception occur: "+m);
}

System.out.println("rest of the code...");
}

}

Output:
Exception occured:
InvalidAgeException:not valid

rest of the code...

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 97 Dr.Venkateswarulu, Assoc Prof

By the help of custom exception, you can have your own exception and message. Let's see a
simple example of java custom exception.

Multithreading
A program can be divided into a number of small processes. Each small process can be
addressed as a single thread (a lightweight process). Multithreaded programs contain two or
more threads that can run concurrently. This means that a single program can perform two or
more tasks simultaneously. For example, one thread is writing content on a file at the same time
another thread is performing spelling check.

An instance of Thread class is just an object, like any other object in java. But a thread of
execution means an individual "lightweight" process that has its own call stack. In java each
thread has its own call stack.

A Process consists of the memory space allocated by the operating system that can contain one
or more threads. A thread cannot exist on its own; It must be a part of process.

There are two distinct types of Multitasking i.e., Processor-based and Thread-based
Multitasking.

What is the difference between thread based and processor-based Multitasking
Thread Process
Thread is a light-weight process. Process is a heavily-weight process.
Threads share the address space Processes require their own separate address space.

In Thread-based multitasking, thread is
the smallest unit of code, which means
a single program can perform two or
more tasks simultaneously.
For example a text editor can print and
at the same time you can edit text
provided that those two tasks are
perform by separate threads.

Process-Based multitasking is a feature that allows
your computer to run two or more
programs concurrently. For example you can listen
to music and at the same time chat with
your friends on Facebook using browser.

Inter thread communication is
inexpensive, and context switching
from one thread to the next is lower in
cost.

Inter process communication is expensive and
limited

Difference between Multi tasking and Multi threading

A multithreaded program contains two or more parts that can run concurrently. Each part of such
a program is called a thread, and each thread defines a separate path of execution. Thus,
multithreading is a specialized form of multitasking.

There are two distinct types of multitasking: process-based and thread-based.

A process is a program that is executing. Thus, process-based multitasking is the feature that
allows to run two or more programs concurrently. For example, process-based multitasking

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 98 Dr.Venkateswarulu, Assoc Prof

enables you to run the Java compiler at the same time that you are using a text editor.

In process-based multitasking, a program is the smallest unit of code that can be dispatched by
the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable
code. This means that a single program can perform two or more tasks simultaneously. For
instance, a text editor can format text at the same time that it is printing, as long as these two
actions are being performed by two separate threads.

Thus, process-based multitasking deals with the “big picture,” and thread-based multitasking
handles the details.

Multitasking threads require less overhead than multitasking processes. Processes are
heavyweight tasks that require their own separate address spaces. Inter process communication
is expensive and limited. Context switching from one process to another is also costly.

Threads, on the other hand, are lightweight. They share the same address space and
cooperatively share the same heavyweight process. Inter thread communication is inexpensive,
and context switching from one thread to the next is low cost.

Multithreading enables you to write very efficient programs that make maximum use of the
CPU, because idle time can be kept to a minimum. This is especially important for the
interactive, networked environment in which Java operates, because idle time is common.

Benefits of Multithreading
1. Enables programmers to do multiple things at one time

2. Programmers can divide a long program into threads and execute them in parallel which
eventually increases the speed of the program execution

3. Improved performance and concurrency
4.

4. Simultaneous access to multiple applications

Concurrent Parallel
– Tasks that overlap in time

• The system might run them in parallel

on multiple processors

– Tasks that run at the same time on different
processors

Two Queues One coffee machine

Two Queues Two coffee machines

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 99 Dr.Venkateswarulu, Assoc Prof

Definition: Thread is a tiny program running continuously. It is sometimes called as light-
weight process.

A thread can be in any of the five following states

1. Newborn State: When a thread object is created a new thread is born and said to be in
Newborn state.

2. Runnable State: If a thread is in this state it means that the thread is ready for execution and
waiting for the availability of the processor. If all threads in queue are of same priority then
they are given time slots for execution in round robin fashion

3. Running State: It means that the processor has given its time to the thread for execution. A
thread keeps running until the following conditions occurs

a. Thread give up its control on its own and it can happen in the following situations
i. A thread gets suspended using suspend() method which can only be revived with

resume() method
ii. A thread is made to sleep for a specified period of time using sleep(time) method, where

time in milliseconds
iii. A thread is made to wait for some event to occur using wait () method.

In this case a thread can be scheduled to run again using notify () method.

b. A thread is pre-empted by a higher priority thread

4. Blocked State: If a thread is prevented from entering into runnable state and subsequently
running state, then a thread is said to be in Blocked state.

5. Dead State: A runnable thread enters the Dead or terminated state when it completes
its task or otherwise terminates.

The main thread
Even if you don't create any thread in your program, a thread called main thread is still created.
Although themain thread is automatically created, you can control it by obtaining a reference to
it by callingcurrentThread() method.

Two important things to know about main thread are,
 It is the thread from which other threads will be produced.

Life cycle of a Thread

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 100 Dr.Venkateswarulu, Assoc Prof

Extends

Implementation of thread

Implements

Thread (class)
Runnable (interface)

Run() method

public void run()

 main thread must be always the last thread to finish execution.

Output : Name of thread is Thread[MainThread,5,main]

Creating a thread
Java defines two ways by which a thread can be created.

 By implementing the Runnable interface.
 By extending the Thread class.

Implementing the Runnable Interface

The easiest way to create a thread is to create a class that implements the runnable interface.
After implementing runnable interface , the class needs to implement the run() method, which is
of form,

 run() method introduces a concurrent thread into your program. This thread will end when
run() returns.

 You must specify the code for your thread inside run() method.

 run() method can call other methods, can use other classes and declare variables just like
any other normal method.

class MainThread
{
public static void main(String[] args)
{
Thread t=Thread.currentThread();
t.setName("MainThread");
System.out.println("Name of thread is "+t);
}

}

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 101 Dr.Venkateswarulu, Assoc Prof

The second way to create a thread is to create a new class that extends Thread, and then to create
an instance of that class. The extending class must override the run() method, which is the entry
point for the new thread. It must also call start() to begin execution of the new thread.

class T2 extends Thread
{
public void run()
{
System.out.println("one thread created..");
}
public static void main(String args[])
{
T2 obj1 = new T2();
Obj1.start();
}
}

Extending Thread class

EX: class T1 implements Runnable
{

public void run()
{

System.out.println("concurrent thread started running..");
}

public static void main(String args[])
{

T1 obj = new T1();
Thread t = new Thread(obj);
t.start();

}
 }
Output :
 concurrent thread started running..

To call the run() method, start() method is used. On calling start(), a new stack is provided to
the thread and run() method is called to introduce the new thread into the program.

Output :
one thread created..

In this case also, as we must override the run() and then use the start() method to start and run
the thread.

Q: Can we start a thread twice?

Ans: No, if a thread is started it can never be started again, if you do so, an
illegalThreadStateException is thrown. Example is shown below in which a same thread is coded

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 102 Dr.Venkateswarulu, Assoc Prof

to start again

Example:

Interrupting threads:
Stopping a thread: A thread can be stopped from running further by issuing the following
statement-

th.stop();

By this statement the thread enters in a dead state. From stopping state a thread can never return
to a runnable state.

Use of stop() Method
The stop() method kills the thread on execution

Example:

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 103 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 104 Dr.Venkateswarulu, Assoc Prof

Blocking a thread:
A thread can be temporarily stopped from running. This is called blocking or suspending of a
thread. Following are the ways by which thread can be blocked-

1. sleep()
By sleep method a thread can be blocked for some specific time. When the specified time
gets elapsed then the thread can return to a runnable state.

Example:

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 105 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 106 Dr.Venkateswarulu, Assoc Prof

2. suspend()
By suspend method the thread can be blocked until further request comes. When the
resume() method is invoked then the returns to a runnable stste.

3. wait()
The thread can be made suspended for some specific conditions. When the notify() method is
called then tha blocked thread returns to the runnable state.

The difference between the suspending and stopping thread is that if a thread is suspended then
its execution is stopped temporarily and it can return to a runnable state. But in case, if a thread
is stopped then it goes to a dead state and can never return to runnable state.

 JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 107 Dr.Venkateswarulu, Assoc Prof

Thread Priorities
There are various properties of threads. Those are,

\} Thread priorities
\} Daemon Threads
\} Thread group

Thread Priorities:
Every thread has a priority that helps the operating system determine the order in which threads
are scheduled for execution. In java thread priority ranges between,

 MIN-PRIORITY (a constant of 1)
 MAX-PRIORITY (a constant of 10)

By default every thread is given a NORM-PRIORITY(5).

The main thread always have NORM-PRIORITY.

Threads with higher priority are more important to a program and should be allocated processor
time before lower-priority threads. However, thread priorities cannot guarantee the order in
which threads execute and very much platform dependent.

Example:
public clicker(int p) {
t = new Thread(this);
t.setPriority(p);
}
public void run() {
while (running) {
click++;
}
}
public void stop() {
running = false;
}
public void start() {
t.start();
}
}
class HiLoPri {
public static void main(String args[]) {
Thread.currentThread().setPriority(Thread.
MAX_PRIORITY);
clicker hi = new
clicker(Thread.NORM_PRIORITY + 2);
clicker lo = new
clicker(Thread.NORM_PRIORITY - 2);
lo.start();
hi.start();

try {
Thread.sleep(10000);
} catch (InterruptedException e) {
System.out.println("Main thread

interrupted.");
}
lo.stop();
hi.stop();

4 Wait for child threads to
terminate. try {

hi.t.join();
lo.t.join();
} catch (InterruptedException e) {
System.out.println("InterruptedException
caught"); }System.out.println("Low-priority
thread: " + lo.click);
System.out.println("High-priority thread: " +
hi.click);

}
}

Output:
Low-priority thread: 4408112
High-priority thread: 589626904

Dept of CSE, NRCM 108 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

EX2:

 In the above
code, you can see Priorities of Thread is set to maximum for Thread A which lets it to run to
completion ahead of C which is set to minimum priority.

Output:

Daemon Thread:
In Java, any thread can be a Daemon thread. Daemon threads are like a service providers for
other threads. Daemon threads are used for background supporting tasks and are only needed
while normal threads are executing.

If normal threads are not running and remaining threads are daemon threads then the interpreter
exits. setDaemon(true/false) ? This method is used to specify that a thread is daemon
thread.public boolean isDaemon() ? This method is used to determine the thread is daemon
thread or not.

The core difference between user threads and daemon threads is that the JVM will only shut
down a program when all user threads have terminated. Daemon threads are terminated by the
JVM when there are no longer any user threads running, including the main thread of execution.
Use daemons as the minions they are.

import java.io.*;
public class DaemonThread extends Thread
{
public void run()
{
System.out.println("Enter run method");
System.out.println("In run method: currentThread() is" +Thread.currentThread());

Dept of CSE, NRCM 109 Dr.Venkateswarulu, Assoc Prof

while(true)
{
try
{
Thread.sleep(500);
}
catch(InterruptedException x)

{
}

System.out.println("In run method: woke up again");
}

}
public static void main(String args[])
{
System.out.println("Entering main method");
DaemonThread t=new DaemonThread();
t.setDaemon(true);
t.start();
try
{
Thread.sleep(3000);
}
catch(InterruptedException x)
{
}
System.out.println("Leaving main thread");
} }
Output:

Synchronization
When two or more threads need access to a shared resource, they need some way to ensure that
the resource will be used by only one thread at a time. The process by which this synchronization
is achieved is called thread synchronization.

The synchronized keyword in Java creates a block of code referred to as a critical section. Every
Java object with a critical section of code gets a lock associated with the object. To enter a
critical section, a thread needs to obtain the corresponding object's lock.

synchronized(object)
{

// statements to be synchronized

Dept of CSE, NRCM 110 Dr.Venkateswarulu, Assoc Prof

}

 JAVA PROGRAMMING(CS2205PC)

Problem without using Synchronization
In the following example method updatesum() is not synchronized and access by both the threads
simultaneously which results in inconsistent output. Making a method synchronized, Java creates
a “monitor” and hands it over to the thread that calls the method first time.

As long as the thread holds the monitor, no other thread can enter the synchronized section of the
code. Writing the method as synchronized will make one thread enter the method and till
execution is not complete no other thread can get access to the method.

Dept of CSE, NRCM 111 Dr.Venkateswarulu, Assoc Prof

Note: The above output is using synchronized keyword.

Inter thread Communication
It is all about making synchronized threads communicate with each other. It is a mechanism in
which a thread is paused running in its critical section and another thread is allowed to enter in
the same critical section to be executed. These method are implemented as final in Object. All
three method can be called only from within a synchronized context. It is implemented by the
following methods of Object Class:

wait(): This method tells the calling thread to give up the monitor and go to sleep until some

Dept of CSE, NRCM 112 Dr.Venkateswarulu, Assoc Prof

other thread enters the same monitor and calls notify().

notify(): This method wakes up the first thread that called wait() on the same object.

notifyAll(): This method wakes up all the threads that called wait() on the same object. The
highest priority thread will run first. These methods are implemented as final methods in Object,
so all classes have them. All three methods can be called only from within a synchronized
context.
Example:

Dept of CSE, NRCM 113 Dr.Venkateswarulu, Assoc Prof

Difference between wait() and sleep()

Dept of CSE, NRCM 114 Dr.Venkateswarulu, Assoc Prof

114

 JAVA PROGRAMMING(CS2205PC)

UNIT IV: Applets – Concepts of Applets, differences between applets and applications, life
cycle of an applet, types of applets, creating applets, passing parameters to applets.

Event Handling- Events, Event sources, Event classes, Event Listeners, Delegation
event model, handling mouse and keyboard events, Adapter classes.

Streams- Byte streams, Character streams, Text input/output.

APPLETS:

An applet is a program that comes from server into a client and gets executed at client side and
displays the result.

An applet represents byte code embedded in a html page. (Applet = bytecode + html) and run
with the help of Java enabled browsers such as Internet Explorer.

An applet is a Java program that runs in a browser. Unlike Java applications applets do not have
a main () method.

To create applet we can use java.applet.Applet or javax.swing.JApplet class. All applets inherit
the super class „Applet‟. An Applet class contains several methods that help to control the
execution of an applet.

Advantages:
 Applets provide dynamic nature for a webpage.
 Applets are used in developing games and animations.
 Writing and displaying (browser) graphics and animations is easier than

applications.
 In GUI development, constructor, size of frame, window closing code etc. are not

required

Restrictions of Applets of Applets Vs Applications
 Applets are required separate compilation before opening in a browser.

 In realtime environment, the bytecode of applet is to be downloaded from the server to the
client machine.

 Applets are treated as untrusted (as they were developed by unknown people and placed on
unknown servers whose trustworthiness is not guaranteed).

 Extra Code is required to communicate between applets using AppletContext.

DEFFERENCES BETWEEN APPLETS AND APPLICATIONS

FEATURE APPLICATION APPLET

main() method main() method Present main() method Not present

Execution Can be executed on standalone
computer system. (JDK & JRE)

Used to run a program on client
Browser like Chrome.

Dept of CSE, NRCM 115 Dr.Venkateswarulu, Assoc Prof

115

Nature Called as stand-alone
application as application
can be executed from
command prompt

Requires some third party
tool help like a browser to
execute

Restrictions

Can access any data or software
available on the system

Cannot access anything on the
system except browser‟s
services

Security Does not require any security Requires highest security for the
system as they are untrusted

Programming larger programs small programs

Platform platform independent platform independent

Accessibility The java applications are
designed to work with the
client as well as server.

Applets are designed just for
handling the client site
problems.

Working Applications are created by
writing public static void
main(String[] s) method

Applets are created by
extending the java.applet.Applet
class

Client side /
Server side

The applications don't
have such type of criteria

Applets are designed for the
client site programming purpose

Methods Application has a single start
point which is main method

Applet application has 5
methods which will be
automatically invoked.

Example
public class MyClass

import java.awt.*;

 { import java.applet.*;
 public static void main(String

 args[]) {} public
 } class Myclass extends Applet
 {
 public void init()
 {
 }
 public void start()
 {
 }
 public void stop()
 {
 }
 public void destroy() {}

public void paint(Graphics g) {}

 }

Dept of CSE, NRCM 116 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

LIFE CYCLE OF AN APPLET
Let the Applet class extends Applet or JApplet class.

Initialization:


public void init(): This method is used for initializing variables, parameters to create
components. This method is executed only once at the time of applet loaded into memory.

public void init()
{
//initialization
}

Runnning:


public void start (): After init() method is executed, the start method is executed
automatically. Start method is executed as long as applet gains focus. In this method code
related to opening files and connecting to database and retrieving the data and processing

the data is written.

Idle / Runnable:


public void stop (): This method is executed when the applet loses focus. Code related to
closing the files and database, stopping threads and performing clean up operations are
written in this stop method.

Dead/Destroyed:


public void destroy (): This method is executed only once when the applet is terminated
from the memory.

Executing above methods in that sequence is called applet life cycle.

We can also use public void paint (Graphics g) in applets.

//An Applet skeleton.
import java.awt.*;
import java.applet.*;
/*
<applet code="AppletSkel" width=300 height=100>
</applet>
*/
public class AppletSkel extends Applet {
3 Called first.

public void
init() {

4 initialization
}

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 117 Dr.Venkateswarulu, Assoc Prof

/* Called second, after init(). Also called whenever the applet is restarted. */
public void start() {
3 start or resume execution
}
4 Called when the applet is

stopped. public void stop() {
5 suspends execution
}
/* Called when applet is terminated. This is the last method executed. */
public void destroy() {

5 perform shutdown activities
}

6 Called when an applet's window must be
restored. public void paint(Graphics g) {

7 redisplay contents of window
}
}

After writing an applet, an applet is compiled in the same way as Java application but running of
an applet is different.

There are two ways to run an applet.


Executing an applet within a Java compatible web browser.


Executing an applet using „appletviewer‟. This executes the applet in a window.

To execute an applet using web browser, we must write a small HTML file which contains the
appropriate „APPLET‟ tag. <APPLET> tag is useful to embed an applet into an HTML page. It
has the following form:

<APPLET CODE=”name of the applet class file” HEIGHT = maximum height of applet in

pixels WIDTH = maximum width of applet in pixels ALIGN = alignment (LEFT, RIGHT,

MIDDLE, TOP, BOTTOM)>

<PARAM NAME = parameter name VALUE = its
value> </APPLET>

Execution: appletviewer programname.java or appletviewer programname.html

The <PARAM> tag useful to define a variable (parameter) and its value inside the HTML page
which can be passed to the applet. The applet can access the parameter value using
getParameter () method, as: String value = getParameter (“pname”);

Example Program:
Following is a simple applet named HelloWorldApplet.java −

import java.applet.*;
import java.awt.*;
public class HelloWorldApplet extends Applet {

public void paint (Graphics g) {
g.drawString ("Hello World", 25, 50);

} }

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 118 Dr.Venkateswarulu, Assoc Prof

Invoking an Applet - HelloWorldApplet.html

OUTPUT: javac HelloWorldApplet.java

appletviewer HelloWorldApplet.html

Embedded an Applet
//First.java
import java.applet.Applet;
import java.awt.Graphics;
/*
<applet code="First.class" width="300" height="300">
</applet>
*/
public class First extends Applet
{

public void paint(Graphics g){
g.drawString("welcome to applet",150,150);

}
}

OUTPUT: javac First.java

appletviewer First.java

TYPES OF APPLETS
Applets are of two types:

// Local Applets
// Remote Applets

Local Applets: An applet developed locally and stored in a local system is called local applets.
So, local system does not require internet. We can write our own applets and embed them into
the web pages.
Remote Applets: The applet that is downloaded from a remote computer system and embed
applet into a web page. The internet should be present in the system to download the applet and
run it. To download the applet we must know the applet address on web known as Uniform
Resource Locator(URL) and must be specified in the applets HTML document as the value of
CODEBASE.

<html>
<title>The Hello, World Applet</title>

<applet code = "HelloWorldApplet.class" width = "320" height = "120">
</applet>

</html>

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 119 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 120 Dr.Venkateswarulu, Assoc Prof

PASSING PARAMETERS TO AN APPLET

Java applet has the feature of retrieving the parameter values passed from the html page. So, you
can pass the parameters from your html page to the applet embedded in your page. The param
tag(<parma name="" value=""></param>) is used to pass the parameters to an applet. The
applet has to call the getParameter() method supplied by the java.applet.Applet parent class.

Ex1: Write a program to pass employ name and id number to an applet.
import java.applet.*;
import java.awt.*;
/* <applet code="MyApplet2.class" width = 600 height= 450>
<param name = "t1" value="Hari Prasad"> <param name =
"t2" value ="101">
</applet> */

public class MyApplet2 extends Applet
{
String n;
String id;
public void init()
{

n = getParameter("t1");
id = getParameter("t2");

}
public void paint(Graphics g)
{
g.drawString("Name is : " + n, 100,100);
g.drawString("Id is : "+ id, 100,150);

}
}

Ex2: Write a program to pass two numbers and pass result to an applet.
import java.awt.*;
import java.applet.*;
/*<APPLET code="Pp" width="300"

height="250"> <PARAM name="a" value="5">
<PARAM name="b" value="5">
</APPLET>*/
public class Pp extends Applet
{

String str;
int a,b,result;

public void init()
{

str=getParameter("a");

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 121 Dr.Venkateswarulu, Assoc Prof

a=Integer.parseInt(str);
str=getParameter("b");

b=Integer.parseInt(str);
result=a+b;
str=String.valueOf(result);

}
public void paint(Graphics g)
{

g.drawString(" Result of Addition is : "+str,0,15);
}

}

Ex3: Hai.java
import java.applet.*;
import java.awt.*;
/*<Applet code="hai" height="250" width="250">

<PARAM name="Message" value="Hai friend how are you ..?"></APPLET>
*/
class hai extends Applet
{

private String defaultMessage = "Hello!";
public void paint(Graphics g) {

String inputFromPage = this.getParameter("Message"); if
(inputFromPage == null) inputFromPage = defaultMessage;
g.drawString(inputFromPage, 50, 55);

}
}

Output:

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 122 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

EVENT HANDLING

Event handling is at the core of successful applet programming. Most events to which the applet
will respond are generated by the user. The most commonly handled events are those generated
by the mouse, the keyboard, and various controls, such as a push button.

Events are supported by the java.awt.event package.

The Delegation Event Model


The modern approach to handling events is based on the delegation event model, which
defines standard and consistent mechanisms to generate and process events.


Its concept is quite simple: a source generates an event and sends it to one or more

listeners. In this scheme, the listener simply waits until it receives an event. Once received,
the listener processes the event and then returns.


The advantage of this design is that the application logic that processes events is

cleanly separated from the user interface logic that generates those events. A user interface
element is able to "delegate" the processing of an event to a separate piece of code.


In the delegation event model, listeners must register with a source in order to

receive an event notification. This provides an important benefit: notifications are sent only
to listeners that want to receive them.

EVENTS
In the delegation model, an event is an object that describes a state change in a source. It can be
generated as a consequence of a person interacting with the elements in a graphical user
interface. Some of the activities that cause events to be generated are pressing a button, entering
a character via the keyboard, selecting an item in a list, and clicking the mouse.

Events may also occur that are not directly caused by interactions with a user interface.
For example, an event may be generated when a timer expires, a counter exceeds a value,
software or hardware failure occurs, or an operation is completed.

EVENT SOURCES
A source is an object that generates an event. This occurs when the internal state of that object
changes in some way. Sources may generate more than one type of event. A source must register
listeners in order for the listeners to receive notifications about a specific type of event. Each
type of event has its own registration method.

Here is the general form:
public void add Type Listener(Type Listener el)

EVENT LISTENERS
A listener is an object that is notified when an event occurs. It has two major requirements. First,
it must have been registered with one or more sources to receive notifications about specific

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 123 Dr.Venkateswarulu, Assoc Prof

types of events. Second, it must implement methods to receive and process these notifications.
The methods that receive and process events are defined in a set of interfaces found in

 JAVA PROGRAMMING(CS2205PC)

java.awt.event.

For example, the MouseMotionListener interface defines two methods to receive notifications
when the mouse is dragged or moved.

EVENT CLASSES
The classes that represent events are at the core of Java's event handling mechanism. At the root
of the Java event class hierarchy is EventObject, which is in java.util. It is the superclass for all
events.

It’s one constructor is shown here:
EventObject(Object src)

EventObject contains two methods: getSource() and toString() .

The getSource() method returns the source of the event. Ex: Object getSource()
toString() returns the string equivalent of the event.

The package java.awt.event defines several types of events that are generated by various user
interface elements.

Event Class Description
ActionEvent Generated when a button is pressed, a list item is double-clicked, or a menu

item is selected.

AdjustmentEvent Generated when a scroll bar is manipulated.
ComponentEvent Generated when a component is hidden, moved, resized or becomes visible.

ContainerEvent Generated when a component is added to or removed from a container.

FocusEvent Generated when a component gains or loses keyboard focus.

InputEvent Abstract super class for all component input event classes.
ItemEvent Generated when a check box or list item is clicked; so occurs when a choice

selection is made or a checkable menu item is selected or deselected.

KeyEvent Generated when input is received from the keyboard.

MouseEvent Generated when the mouse is dragged, moved, clicked, pressed, or released;
also generated when the mouse enters or exits a component.

MouseWheelEvent Generated when the mouse wheel is moved. (Added by Java 2, version 1.4)

TextEvent Generated when the value of a text area or text field is changed.

WindowEvent Generated when a window is activated, closed, deactivated, deiconified,
iconified, opened, or quit.

The ActionEvent Class
An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a menu
item is selected. The ActionEvent class defines four integer constants that can be used to
identify any modifiers associated with an action event: ALT_MASK , CTRL_MASK ,

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 124 Dr.Venkateswarulu, Assoc Prof

META_MASK , and SHIFT_MASK .

ActionEvent has these three constructors:
ActionEvent(Object src , int type , String cmd)
ActionEvent(Object src , int type , String cmd , int modifiers)
ActionEvent(Object src , int type, String cmd, long when , int modifiers)
The ComponentEvent Class

// ComponentEvent is generated when the size, position, or visibility of a component is
changed. There are four types of component events. The constants and their meanings are
shown here:

COMPONENT_HIDDEN The component was hidden.
COMPONENT_MOVED The component was moved.
COMPONENT_RESIZED The component was resized.
COMPONENT_SHOWN The component became visible.

The ContainerEvent Class
//ContainerEvent is generated when a component is added to or removed from a container.

There are two types of container events.


COMPONENT_ADDED and

COMPONENT_REMOVED The KeyEvent Class
//KeyEvent is generated when keyboard input occurs. There are three types of key events,

which are identified by these integer constants: KEY_PRESSED, KEY_RELEASED,
and KEY_TYPED .

The first two events are generated when any key is pressed or released. The last event occurs
only when a character is generated.

The MouseEvent Class
There are eight types of mouse events. The MouseEvent class defines the following integer
constants that can be used to identify them:
MOUSE_CLICKED The user clicked the mouse.
MOUSE_DRAGGED The user dragged the mouse.
MOUSE_ENTERED The mouse entered a component.
MOUSE_EXITED The mouse exited from a component.
MOUSE_MOVED The mouse moved.
MOUSE_PRESSED The mouse was pressed.
MOUSE_RELEASED The mouse was released.
MOUSE_WHEEL The mouse wheel was moved (Java 2, v1.4).

The WindowEvent Class
There are ten types of window events. The WindowEvent class defines integer constants that
can be used to identify them. The constants and their meanings are shown here:

WINDOW_ACTIVATED The window was activated.
WINDOW_CLOSED The window has been closed.
WINDOW_CLOSING The user requested that the window be closed.
WINDOW_DEACTIVATED The window was deactivated.
WINDOW_DEICONIFIED The window was deiconified.

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 125 Dr.Venkateswarulu, Assoc Prof

WINDOW_GAINED_FOCUS The window gained input focus.
WINDOW_ICONIFIED The window was iconified.
WINDOW_LOST_FOCUS The window lost input focus.
WINDOW_OPENED The window was opened.
WINDOW_STATE_CHANGED The state of the window changed.

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 126 Dr.Venkateswarulu, Assoc Prof

EVENT LISTENER INTERFACES
When an event occurs, the event source invokes the appropriate method defined by the listener
and provides an event object as its argument

Interface Description
ActionListener Defines one method to receive action events.

AdjustmentListener Defines one method to receive adjustment events.

ComponentListener Defines four methods to recognize when a component is hidden,
moved, resized, or shown.

ContainerListener Defines two methods to recognize when a component is added to or
removed from a container.

FocusListener Defines two methods to recognize when a component gains or losses
keyboard focus.

ItemListener Defines one method to recognize when the state of an item changes.
KeyListener Defines three methods to recognize when a key is pressed, released,

or typed.

MouseListener Defines five methods to recognize when the mouse is clicked, enters a
component, exits a component, is pressed, or is released.

MouseMotionListener Defines two methods to recognize when the mouse is dragged or
moved.

MouseWheelListener Defines one method to recognize when the mouse wheel is moved.
TextListener Defines one method to recognize when a text value changes.
WindowListener Defines seven methods to recognize when a window is activated,

closed, deactivated, deiconified, iconified, opened, or quit.

The delegation event model has two parts: sources and listeners. Listeners are created by
implementing one or more of the interfaces defined by the java.awt.event package.

The ActionListener Interface
This interface defines the actionPerformed() method that is invoked when an action event
occurs.

Its general form is shown here: void actionPerformed(ActionEvent ae)

The ItemListener Interface
This interface defines the itemStateChanged() method that is invoked when the state of an item
changes.

Its general form is shown here: void itemStateChanged(ItemEvent ie)

The KeyListener Interface
This interface defines three methods. The keyPressed() and keyReleased() methods are invoked
when a key is pressed and released, respectively. The keyTyped() method is invoked
when a character has been entered. For example, if a user presses and releases the key, three
events are generated in A sequence: key pressed, typed, and released.

The general forms of these methods are shown here:
void keyPressed(KeyEvent key)
void keyReleased(KeyEvent ke)

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 127 Dr.Venkateswarulu, Assoc Prof

void keyTyped(KeyEvent ke)

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 128 Dr.Venkateswarulu, Assoc Prof

The MouseListener Interface
This interface defines five methods. If the mouse is pressed and released at the same point,
mouseClicked() is invoked. When the mouse enters a component, the mouseEntered() method
is called. When it leaves, mouseExited() is called. The mousePressed() and mouseReleased()
methods are invoked when the mouse is pressed and released, respectively.

The general forms of these methods are shown here:
void mouseClicked(MouseEvent me)
void mouseEntered(MouseEvent me)
void mouseExited(MouseEvent me)
void mousePressed(MouseEvent me)
void mouseReleased(MouseEvent me)

The MouseMotionListener Interface
This interface defines two methods. The mouseDragged() method is called multiple times as the
mouse is dragged. The mouseMoved() method is called multiple times as the mouse is moved.

Their general forms are shown here:
void mouseDragged(MouseEvent me)
void mouseMoved(MouseEvent me)

The TextListener Interface
This interface defines the textChanged() method that is invoked when a change occurs in a text
area or text field.

Its general form is shown here: void textChanged(TextEvent te)

Handling Mouse Events
To handle mouse events, we must implement the MouseListener and the MouseMotion Listener
interfaces.

EX: // Demonstrate the mouse event handlers.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="MouseEvents" width=300 height=100>
</applet>
*/
public class MouseEvents extends Applet implements MouseListener, MouseMotionListener
{ String msg = "";
int mouseX = 0, mouseY = 0; // coordinates of mouse
public void init() {
addMouseListener(this);
addMouseMotionListener(this);}

Dept of CSE, NRCM 129 Dr.Venkateswarulu, Assoc Prof

// Handle mouse clicked.
public void mouseClicked(MouseEvent me) {
mouseX = 0; // save coordinates
mouseY = 10;
msg = "Mouse clicked.";
repaint();
}

// Handle mouse entered.
public void mouseEntered(MouseEvent me) {

// save
coordinates
mouseX = 0;
mouseY = 10;

msg = "Mouse entered.";
repaint();
}

// Handle mouse exited.

public void mouseExited(MouseEvent me) {
// save

coordinate
s mouseX
= 0;
mouseY =
10;

msg = "Mouse exited.";
repaint();
}

// Handle button pressed.
public void mousePressed(MouseEvent me) {

// save coordinates
mouseX =
me.getX();
mouseY =
me.getY(); msg =
"Down"; repaint();

}

// Handle button released.
public void mouseReleased(MouseEvent me) {

1. save
coordinates
mouseX =
me.getX();
mouseY =
me.getY(); msg
= "Up";
repaint();

}

Dept of CSE, NRCM 130 Dr.Venkateswarulu, Assoc Prof

2. Handle mouse dragged.
public void mouseDragged(MouseEvent me) {

1. save coordinates
mouseX =
me.getX();

mouseY = me.getY();
msg = "*";
showStatus("Dragging mouse at " + mouseX + ", " + mouseY);
repaint();
}

// Handle mouse moved.
public void mouseMoved(MouseEvent me) {
// show status
showStatus("Moving mouse at " + me.getX() + ", " + me.getY());
}

// Display msg in applet window at current X,Y location.
public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);
}
}

Handling Keyboard Events
When a key is pressed, a KEY_PRESSED event is generated. This results in a call to the
keyPressed() event handler. When the key is released, a KEY_RELEASED event is generated
and the keyReleased() handler is executed. If a character is generated by the keystroke, then a
KEY_TYPED event is sent and the keyTyped() handler is invoked.

Thus, each time the user presses a key, at least two and often three events are generated. If all
you care about are actual characters, then you can ignore the information passed by the key press
and release events.

EX: // Demonstrate the key event handlers.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/* <applet code="SimpleKey" width=300
height=100> </applet> */
public class SimpleKey extends Applet implements KeyListener
{

String msg = "";

int X = 10, Y = 20; // output coordinates
public void init() {
addKeyListener(this);
requestFocus(); // request input focus

}

Dept of CSE, NRCM 131 Dr.Venkateswarulu, Assoc Prof

public void keyPressed(KeyEvent ke)
{ showStatus("Key Down"); }

public void keyReleased(KeyEvent ke) {
showStatus("Key Up");
}

public void keyTyped(KeyEvent ke) {
msg += ke.getKeyChar();
repaint();
}

// Display keystrokes.
public void paint(Graphics g)
{ g.drawString(msg, X, Y); }

}

Adapter Classes
Java provides a special feature, called an adapter class , that can simplify the creation of event
handlers in certain situations. An adapter class provides an empty implementation of all methods
in an event listener interface.

Adapter classes are useful when you want to receive and process only some of the events that are
handled by a particular event listener interface.

For example, the MouseMotionAdapter class has two methods, mouseDragged() and
mouseMoved() . The signatures of these empty methods are exactly as defined in the
MouseMotionListener interface. If you were interested in only mouse drag events, then you
could simply extend MouseMotionAdapter and implement mouseDragged() . The empty
implementation of mouseMoved() would handle the mouse motion events for you.

Adapter Class
ComponentAdapter
ContainerAdapter
FocusAdapter
KeyAdapter
MouseAdapter
MouseMotionAdapter
WindowAdapter

Listener Interface
ComponentListener
ContainerListener
FocusListener
KeyListener
MouseListener
MouseMotionListener
WindowListener

EX: // Demonstrate an adapter.
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/*
<applet code="AdapterDemo" width=300 height=100>
</applet>
*/

Dept of CSE, NRCM 132 Dr.Venkateswarulu, Assoc Prof

public class AdapterDemo extends Applet
{
public void init() {
addMouseListener(new MyMouseAdapter(this));
addMouseMotionListener(new
MyMouseMotionAdapter(this)); }
}

Dept of CSE, NRCM 133 Dr.Venkateswarulu, Assoc Prof

class MyMouseAdapter extends MouseAdapter
{
AdapterDemo adapterDemo;
public MyMouseAdapter(AdapterDemo adapterDemo)
{

this.adapterDemo = adapterDemo;
}

// Handle mouse clicked.
public void mouseClicked(MouseEvent me) {
adapterDemo.showStatus("Mouse clicked");
}
}

class MyMouseMotionAdapter extends
MouseMotionAdapter {

AdapterDemo adapterDemo;
public MyMouseMotionAdapter(AdapterDemo adapterDemo)
{

this.adapterDemo = adapterDemo;
}

// Handle mouse dragged.
public void mouseDragged(MouseEvent me)
{

adapterDemo.showStatus("Mouse dragged");
}

}

Files and Streams:
Text stream classes for reading data Text stream classes for writing data

Dept of CSE, NRCM 134 Dr.Venkateswarulu, Assoc Prof

Dept of CSE, NRCM 135 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Stream
A stream can be defined as a sequence of data. There are two kinds of Streams −
 InPutStream − The InputStream is used to read data from a source.
 OutPutStream − The OutputStream is used for writing data to a destination.

Java provides strong but flexible support for I/O related to files and networks.

Byte Streams
Java byte streams are used to perform input and output of 8-bit bytes. Though there are many
classes related to byte streams but the most frequently used classes are, FileInputStream and
FileOutputStream.
Example
import java.io.*;
public class CopyFile {

public static void main(String args[]) throws IOException {
FileInputStream in = null;
FileOutputStream out = null;
try {

in = new FileInputStream("input.txt");
out = new FileOutputStream("output.txt");
int c;
while ((c = in.read()) != -1) {

out.write(c);
}

}finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
} } } }

Now let's have a file input.txt with the following content:
This is test for copy file.

$javac CopyFile.java
$java CopyFile

Character Streams

Java Byte streams are used to perform input and output of 8-bit bytes, whereas
Java Character streams are used to perform input and output for 16-bit unicode. Though
there are many classes related to character streams but the most frequently used classes
are, FileReader and FileWriter.

Dept of CSE, NRCM 136 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Though internally FileReader uses FileInputStream and FileWriter uses FileOutputStream but
here the major difference is that FileReader reads two bytes at a time and FileWriter writes two
bytes at a time.

Example
import java.io.*;
public class CopyFile {

public static void main(String args[]) throws IOException {
FileReader in = null;
FileWriter out = null;

try {
in = new FileReader("input.txt");
out = new FileWriter("output.txt");

int c;
while ((c = in.read()) != -1) {

out.write(c);
}

}finally {
if (in != null) {

in.close();
}
if (out != null) {

out.close();
}

}
}

}

Reading and Writing Files Text input/output,
As described earlier, a stream can be defined as a sequence of data. The InputStream is used to
read data from a source and the OutputStream is used for writing data to a destination. Here is
a hierarchy of classes to deal with Input and Output streams.

Dept of CSE, NRCM 137 Dr.Venkateswarulu, Assoc Prof

Dept of CSE, NRCM 138 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

The two important streams are FileInputStream and FileOutputStream (File Handling)

In Java, FileInputStream and FileOutputStream classes are used to read and write data in file. In
another words, they are used for file handling in java.

Java FileOutputStream class

Java FileOutputStream is an output stream for writing data to a file. It is a class belongs to byte
streams. It can be used to create text files.


First we should read data from the keyword. It uses DataInputStream class for reading data from the
keyboard is as:

DataInputStream dis=new DataInputStream(System.in);


FileOutputStream used to send data to the file and attaching the file to FileOutputStream. i.e.,
FileOutputStream fout=new FileOutputStream(“File_name”);


The next step is to read data from DataInputStream and write it into FileOutputStream. It means read data
from dis object and write it into fout object. i.e.,

ch=(char)dis.read(); //read one character into ch
fout.write(ch); //write ch into file.


Finally closing the file using: fout.close();

Creating a Text file:

Example: Write a program to read data from the keyboard and write it to myfile.txt file.
import java.io.*;
class Test{

public static void main(String args[])
{
DataInputStream dis=new DataInputStream(System.in);
FileOutputstream fout=new
FileOutputStream("myfile.txt"); System.out.println("Enter
text @ at the end:”); char ch;
while((ch=(char)dis.read())!=‟@‟)

fout.write(ch);
fout.close();

}
}

Output: javac Test.java

Dept of CSE, NRCM 139 Dr.Venkateswarulu, Assoc Prof

Output: javac ReadFile.java
java ReadFile

JAVA PROGRAMMING(CS2205PC)

Java FileInputStream class

It is useful to read data from a file in the form of sequence of bytes. It is possible to read data
from a text file using FileInputStream. i.e.,

FileInputStream fin= new FileInputStream(“myfile.txt”);


To read data from
the file is, ch=fin.read();

When there is no more data available to read then it returns -1.


The Output Stream is used to send data to the monitor. i.e., PrintStream, for displaying the data we can
use System.out.

System.out.print(ch);

Reading data from a text file using FileInputStream:

Java FileInputStream class obtains input bytes from a file. It is used for reading streams of raw
bytes such as image data. It should be used to read byte-oriented data for example to read image,
audio, video etc.

Example: Write a program to read data from myfile.txt using FileInputStream and display
it on monitor.

import java.io.*;
class ReadFile
{
public static void main(String args[])
{

FileInputStream fin=new FileInputStream("myfile.txt");
System.out.println(“File Contents:”); int ch;
while((ch=fin.read())!=-1)
{
System.out.println((char)ch);
}
fin.close();

}
}

Dept of CSE, NRCM 140 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

UNIT V: GUI Programming with Java – AWT class hierarchy, component, container, panel,
window, frame, graphics.

AWT controls: Labels, button, text field, check box, check box groups, choices, lists,
scrollbars, and graphics.

Layout Manager – Layout manager types: border, grid and flow.

Swing – Introduction, limitations of AWT, Swing vs AWT.

GUI PROGRAMMING WITH JAVA

ABSTRACT WINDOW TOOLKIT (AWT)

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-based application

in java. Java AWT components are platform-dependent i.e. components are displayed
according to the view of operating system. AWT is heavyweight i.e. its components uses the
resources of system. The Abstract Window Toolkit(AWT) support for applets. The AWT
contains numerous classes and methods that allow you to create and manage windows.

The java.awt package provides classes for AWT api such as TextField, Label, TextArea,
RadioButton, CheckBox, Choice, List etc.

AWT Classes
The AWT classes are contained in the java.awt package. It is one of Java's largest packages.

Class Description

AWTEvent Encapsulates AWT events.
AWTEventMulticaster Dispatches events to multiple listeners.
BorderLayout Border layouts use five components:

North, South, East, West, and Center.
CardLayout Card layouts emulate index cards.

Only the one on top is showing.
Checkbox Creates a check box control.
CheckboxGroup Creates a group of check box controls.
CheckboxMenuItem Creates an on/off menu item.
Choice Creates a pop-up list.
Color Manages colors in a portable, platform-independent fashion.
Component An abstract superclass for various AWT components.
Container A subclass of Component that can hold other components.
Cursor Encapsulates a bitmapped cursor.
Dialog Creates a dialog window.
Dimension Specifies the dimensions of an object. The width is stored in

width , and the height is stored in height .
Event Encapsulates events.
FlowLayout The flow layout manager. Flow layout positions components left

to right, top to bottom.

Dept of CSE, NRCM 141 Dr.Venkateswarulu, Assoc Prof

Frame Creates a standard window that has a title bar, resize corners, and
a menu bar.

Graphics Encapsulates the graphics context.

Dept of CSE, NRCM 142 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Control Fundamentals
The AWT supports the following types of controls:

3. Labels
4. Push buttons
5. Check boxes
6. Choice lists
7. Lists
8. Scroll bars
9. Text editing

User interaction with the program is of two types:

CUI (Character User Interface): In CUI user interacts with the application by
typing characters or commands. In CUI user should remember the commands. It is
not user friendly.

2. GUI (Graphical User Interface): In GUI user interacts with the application through graphics.
GUI is user friendly. GUI makes application attractive. It is possible to simulate real object in
GUI programs. In java to write GUI programs we can use awt (Abstract Window Toolkit)
package.

Java AWT Class Hierarchy
The hierarchy of Java AWT classes is given below.

Container
The Container is a component in AWT that can contain other components like buttons, textfields,
labels etc. The classes that extend Container class are known as container such as Frame, Dialog
and Panel.

Dept of CSE, NRCM 143 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Window
The window is the container that has no borders and menu bars. You must use frame, dialog or
another window for creating a window.

Panel
The Panel is the container that doesn't contain title bar and menu bars. It can have other
components like button, textfield etc.

Frame
The Frame is the container that contain title bar and can have menu bars. It can have other
components like button, textfield etc.

Useful Methods of Component class

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height) sets the size(width and height) of the component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by
default false.

Listeners and Listener Methods:
Listeners are available for components. A Listener is an interface that listens to an event from a
component. Listeners are available in java.awt.event package. The methods in the listener
interface are to be implemented, when using that listener.

Dept of CSE, NRCM 144 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Layout Managers

A layout manager arranges the child components of a container. It positions and sets the size of
components within the container's display area according to a particular layout scheme.

The layout manager's job is to fit the components into the available area, while maintaining the
proper spatial relationships between the components. AWT comes with a few standard layout
managers that will collectively handle most situations; you can make your own layout managers
if you have special requirements.

LayoutManager at work

Every container has a default layout manager; therefore, when you make a new container, it

Dept of CSE, NRCM 145 Dr.Venkateswarulu, Assoc Prof

comes with a LayoutManager object of the appropriate type. You can install a new layout
manager at any time with the setLayout() method. Below, we set the layout manager of a
container to a BorderLayout:

setLayout (new BorderLayout());

Every component determines three important pieces of information used by the layout manager
in placing and sizing it: a minimum size, a maximum size, and a preferred size.

These are reported by the getMinimumSize(), getMaximumSize(), and getPreferredSize(),
methods of Component, respectively.

When a layout manager is called to arrange its components, it is working within a fixed area. It
usually begins by looking at its container's dimensions, and the preferred or minimum sizes of
the child components.

Layout manager types

Flow Layout
FlowLayout is a simple layout manager that tries to arrange components with their preferred
sizes, from left to right and top to bottom in the display. A FlowLayout can have a specified
justification of LEFT, CENTER, or RIGHT, and a fixed horizontal and vertical padding.

By default, a flow layout uses CENTER justification, meaning that all components are centered
within the area allotted to them. FlowLayout is the default for Panel components like Applet.

The following applet adds five buttons to the default FlowLayout.
import java.awt.*;
/*
<applet code="Flow" width="500" height="500">
</applet>
*/
public class Flow extends java.applet.Applet
{

public void init()
{

//Default for Applet is FlowLayout
add(new Button("One"));

add(new Button("Two"));
add(new Button("Three"));
add(new Button("Four"));
add(new Button("Five"));

}
}
If the applet is small enough, some of the buttons spill over to a second or third row.

Grid Layout

Dept of CSE, NRCM 146 Dr.Venkateswarulu, Assoc Prof

GridLayout arranges components into regularly spaced rows and columns. The components
are arbitrarily resized to fit in the resulting areas; their minimum and preferred sizes are
consequently ignored.

GridLayout is most useful for arranging very regular, identically sized objects and for
allocating space for Panels to hold other layouts in each region of the container.

GridLayout takes the number of rows and columns in its constructor. If you subsequently
give it too many objects to manage, it adds extra columns to make the objects fit. You can also
set the number of rows or columns to zero, which means that you don't care how many elements
the layout manager packs in that dimension.

For example, GridLayout(2,0) requests a layout with two rows and an unlimited number of
columns; if you put ten components into this layout, you'll get two rows of five columns each.
The following applet sets a GridLayout with three rows and two columns as its layout
manager;

import java.awt.*;
/*

<applet code="Grid" width="500"
height="500"> </applet>

*/
public class Grid extends java.applet.Applet
{

public void init()
{

setLayout(new GridLayout(3, 2));

add(new Button("One"));
add(new Button("Two"));
add(new Button("Three"));
add(new Button("Four"));
add(new Button("Five"));

}
}

The five buttons are laid out, in order, from left to right, top to bottom, with one empty spot.

Border Layout

BorderLayout is a little more interesting. It tries to arrange objects in one of five geographical
locations: "North," "South," "East," "West," and "Center," possibly with some padding between.

BorderLayout is the default layout for Window and Frame objects. Because each
component is associated with a direction, BorderLayout can manage at most five components; it
squashes or stretches those components to fit its constraints.

When we add a component to a border layout, we need to specify both the component and the
position at which to add it. To do so, we use an overloaded version of the add() method that
takes an additional argument as a constraint.

Dept of CSE, NRCM 147 Dr.Venkateswarulu, Assoc Prof

The following applet sets a BorderLayout layout and adds our five buttons again, named for their
locations;

import java.awt.*;
/*
<applet code="Border" width="500" height="500">
</applet>
*/
public class Border extends java.applet.Applet
{

public void init()
{

setLayout(new java.awt.BorderLayout());
add(new Button("North"), "North"); add(
new Button("East"), "East");
add(new Button("South"), "South");
add(new Button("West"), "West");
add(new Button("Center"), "Center");

}
}

 JAVA PROGRAMMING(CS2205PC)

Compile: javac Border.java
Run : appletviewer Border.java

Java AWT Example
To create simple awt example, you need a frame. There are two ways to create a frame in AWT.
// By extending Frame class (inheritance)
2. By creating the object of Frame class (association)

Simple example of AWT by inheritance
import java.awt.*;
class First extends Frame{
First(){
Button b=new Button("click me");
b.setBounds(30,100,80,30);// setting button position
add(b);//adding button into frame
setSize(300,300);//frame size 300 width and 300
height setLayout(null);//no layout manager
setVisible(true);//now frame will be visible }

Dept of CSE, NRCM 148 Dr.Venkateswarulu, Assoc Prof

public static void main(String args[]){
First f=new First();
}
}

Simple example of AWT by association
import java.awt.*;
class First2{
First2(){
Frame f=new Frame();
Button b=new Button("click me");
b.setBounds(30,50,80,30);
f.add(b);
f.setSize(300,300);
f.setLayout(null);
f.setVisible(true);
}
public static void main(String args[]){
First2 f=new First2();
}
}

Dept of CSE, NRCM 149 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

AWT controls

Labels:
The easiest control to use is a label. A label is an object of type Label, and it contains a string,
which it displays. Labels are passive controls that do not support any interaction with the user.

// Demonstrate
Labels import
java.awt.*; import
java.applet.*; /*

<applet code="LabelDemo" width=300 height=200>
</applet> */
public class LabelDemo extends Applet
{

public void init()
{
Label one = new Label("One");
Label two = new Label("Two");
Label three = new Label("Three");

add labels to applet window
add(one);
add(two);
add(three);

}
}

Buttons:
The most widely used control is the push button. A push button is a component that contains a
label and that generates an event when it is pressed. Push buttons are objects of type Button.

Button class is useful to create push buttons. A push button triggers a series of events.
To create push button: Button b1 =new Button("label");
To get the label of the button: String l = b1.getLabel();
To set the label of the button: b1.setLabel("label");
To get the label of the button clicked: String str = ae.getActionCommand();



\{ Demonstrate Buttons
import java.awt.*;
import java.awt.event.*;
import java.applet.*;
/* <applet code="ButtonDemo" width=250 height=150>
</applet> */

public class ButtonDemo extends Applet implements ActionListener

{
String msg = "";
Button yes, no, maybe;

Dept of CSE, NRCM 150 Dr.Venkateswarulu, Assoc Prof

public void init()
{
yes = new Button("Yes");
no = new Button("No");
maybe = new Button("Undecided");
add(yes);
add(no);
add(maybe);
yes.addActionListener(this);
no.addActionListener(this);
maybe.addActionListener(this);
}

public void actionPerformed(ActionEvent ae)
{
String str = ae.getActionCommand();

if(str.equals("Yes"))

{
msg = "You pressed Yes.";
}

else if(str.equals("No"))
{
msg = "You pressed No.";
}

else
{

msg = "You pressed Undecided.";
}

repaint();
}
public void paint(Graphics g)
{

g.drawString(msg, 6, 100);
}

}

Check Boxes:
A check box is a control that is used to turn an option on or off. It consists of a small box that
can either contain a check mark or not. There is a label associated with each check box that
describes what option the box represents. You change the state of a check box by clicking on
it. Check boxes can be used individually or as part of a group.

\{ Demonstrate check boxes.

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

Dept of CSE, NRCM 151 Dr.Venkateswarulu, Assoc Prof

/*
<applet code="CheckboxDemo" width=250 height=200>
</applet>
*/
public class CheckboxDemo extends Applet implements ItemListener
{
String msg = "";
checkbox Win98, winNT, solaris, mac;

public void init()
{
win98 = new Checkbox("Windows 98/XP", null, true);
winNT = new Checkbox("Windows NT/2000");
solaris = new Checkbox("Solaris"); mac = new
Checkbox("MacOS");

add(Win98);
add(winNT);
add(solaris);
add(mac);
Win98.addItemListener(this);
winNT.addItemListener(this);
solaris.addItemListener(this);
mac.addItemListener(this);
}
public void itemStateChanged(ItemEvent ie)
{
repaint();
}
// Display current state of the check boxes.

public void paint(Graphics g)
{

msg = "Current state: ";
g.drawString(msg, 6, 80);
msg = " Windows 98/XP: " + Win98.getState();
g.drawString(msg, 6, 100);
msg = " Windows NT/2000: " + winNT.getState();
g.drawString(msg, 6, 120);
msg = " Solaris: " + solaris.getState();
g.drawString(msg, 6, 140);
msg = " MacOS: " + mac.getState();
g.drawString(msg, 6, 160);

}
}

Dept of CSE, NRCM 152 Dr.Venkateswarulu, Assoc Prof

TextField:
The TextField class implements a single-line text-entry area, usually called an edit control.
Text fields allow the user to enter strings and to edit the text using the arrow keys, cut and
paste keys, and mouse selections.

// Demonstrate text field.
import java.awt.*;
import
java.awt.event.*;
import java.applet.*;

/*
<applet code="TextFieldDemo" width=380 height=150>
</applet>
*/
public class TextFieldDemo extends Applet implements ActionListener
{

TextField name, pass;

public void init()
{
Label namep = new Label("Name: ", Label.RIGHT);
Label passp = new Label("Password: ", Label.RIGHT);
name = new TextField(12);
pass = new TextField(8);
pass.setEchoChar('?');
add(namep);
add(name);
add(passp);
add(pass);

// register to receive action events
name.addActionListener(this);
pass.addActionListener(this);

}
// User pressed Enter.
public void actionPerformed(ActionEvent ae)
{
repaint();
}
public void paint(Graphics g)
{

g.drawString("Name: " + name.getText(), 6, 60);
g.drawString("Selected text in name: " + name.getSelectedText(), 6, 80);
g.drawString("Password: " + pass.getText(), 6, 100);

}
}

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 153 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

TextArea:
Sometimes a single line of text input is not enough for a given task. To handle these
situations, the AWT includes a simple multiline editor called TextArea .

\{ Demonstrate
TextArea. import
java.awt.*; import
java.applet.*;

/*
<applet code="TextAreaDemo" width=300
height=250> </applet>
*/
public class TextAreaDemo extends Applet
{
public void init()
{

String val = "There are two ways of constructing " + "a software design.\n" + "One way is to
make it so simple\n" + "that there are obviously no deficiencies.\n" + "And the other way is to
make it so complicated\n" + "that there are no obvious deficiencies.\n\n" + " -C.A.R. Hoare\n\n"
+ "There's an old story about the person who wished\n" + "his computer were as easy to use as
his telephone.\n" + "That wish has come true,\n" + "since I no longer know how to use my
telephone.\n\n" + " -Bjarne Stroustrup, AT&T, (inventor of C++)";

TextArea text = new TextArea(val, 10, 30);
add(text);
}
}

CheckboxGroup

It is possible to create a set of mutually exclusive check boxes in which one and only one check box
in the group can be checked at any one time. These check boxes are often called radio buttons. A
Radio button represents a round shaped button such that only one can be selected from a panel. Radio
button can be created using CheckboxGroup class and Checkbox classes.

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 154 Dr.Venkateswarulu, Assoc Prof

· To create a radio button: CheckboxGroup cbg = new CheckboxGroup ();
Checkbox cb = new Checkbox ("label", cbg, true);

· To know the selected checkbox: Checkbox cb = cbg.getSelectedCheckbox ();
·To know the selected checkbox label: String label = cbg.getSelectedCheckbox().getLabel ();

\{ Demonstrate check box group.

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

/*
<applet code="CBGroup" width=250 height=200>
</applet>
*/

public class CBGroup extends Applet implements ItemListener
{
String msg = "";
Checkbox Win98, winNT, solaris, mac;
CheckboxGroup cbg;
public void init() {
cbg = new CheckboxGroup();
Win98 = new Checkbox("Windows 98/XP", cbg, true);
winNT = new Checkbox("Windows NT/2000", cbg, false);
solaris = new Checkbox("Solaris", cbg, false); mac = new
Checkbox("MacOS", cbg, false);
add(Win98);
add(winNT);
add(solaris);
add(mac);
Win98.addItemListener(this);
winNT.addItemListener(this);
solaris.addItemListener(this);
mac.addItemListener(this);
}
public void itemStateChanged(ItemEvent ie) {
repaint();
}

\{ Display current state of the check
boxes. public void paint(Graphics g) {

msg = "Current selection: ";
msg += cbg.getSelectedCheckbox().getLabel();
g.drawString(msg, 6, 100);
}
}

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 155 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Choice Controls
The Choice class is used to create a pop-up list of items from which the user may choose.
Thus, a Choice control is a form of menu. Choice menu is a popdown list of items. Only
one item can be selected.

· To create a choice menu: Choice ch = new Choice();
· To add items to the choice menu: ch.add ("text");
· To know the name of the item selected from the choice menu:

String s = ch.getSelectedItem ();
· To know the index of the currently selected item: int i = ch.getSelectedIndex();
This method returns -1, if nothing is selected.

//Demonstrate Choice
lists. import
java.awt.*; import
java.awt.event.*;
import java.applet.*;

/*
<applet code="ChoiceDemo" width=300
height=180> </applet>
*/
public class ChoiceDemo extends Applet implements ItemListener
{ Choice os, browser;
String msg = ""; public
void init() { os = new
Choice(); browser = new
Choice();

//add items to os list
os.add("Windows 98/XP");
os.add("Windows NT/2000");
os.add("Solaris");
os.add("MacOS");

\{ add items to browser list
browser.add("Netscape 3.x");
browser.add("Netscape 4.x");
browser.add("Netscape 5.x");
browser.add("Netscape 6.x");
browser.add("Internet Explorer
4.0"); browser.add("Internet
Explorer 5.0");
browser.add("Internet Explorer
6.0"); browser.add("Lynx 2.4");
browser.select("Netscape 4.x");

\{ add choice lists to
window add(os);

add(browser);
\{ register to receive item

events

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 156 Dr.Venkateswarulu, Assoc Prof

os.addItemListener(this);
browser.addItemListener(this);

}

Dept of CSE, NRCM 157 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

public void itemStateChanged(ItemEvent ie) {
repaint();
}

// Display current selections.
public void paint(Graphics g)
{ msg = "Current OS: ";

msg += os.getSelectedItem();
g.drawString(msg, 6, 120);
msg = "Current Browser: ";
msg += browser.getSelectedItem();
g.drawString(msg, 6, 140);
}
}

Lists
The List class provides a compact, multiple-choice, scrolling selection list. Unlike the Choice
object, which shows only the single selected item in the menu, a List object can be
constructed to show any number of choices in the visible window. It can also be created to
allow multiple selections. List provides these constructors: List()

List(int numRows)
List(int numRows , boolean multipleSelect)

A List box is similar to a choice box, it allows the user to select multiple items.

· To create a list box:
(or)

List lst = new List();

List lst = new List (3, true);

This list box initially displays 3 items. The next parameter true represents that the user can
select more than one item from the available items. If it is false, then the user can select only
one item.

= To add items to the list box: lst.add("text");
= To get the selected items: String x[] = lst.getSelectedItems();
= To get the selected indexes: int x[] = lst.getSelectedIndexes ();

// Demonstrate Lists.
import java.awt.*; import
java.awt.event.*; import
java.applet.*; /*

<applet code="ListDemo" width=300 height=180>
</applet>
*/
public class ListDemo extends Applet implements ActionListener
{ List os, browser;
String msg = "";
public void init() { os
= new List(4, true);

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 158 Dr.Venkateswarulu, Assoc Prof

browser = new List(4, false);
\} add items to os list

os.add("Windows 98/XP");
os.add("Windows
NT/2000");
os.add("Solaris");
os.add("MacOS");

\} add items to browser list
browser.add("Netscape 3.x");
browser.add("Netscape 4.x");
browser.add("Netscape 5.x");
browser.add("Netscape 6.x");
browser.add("Internet Explorer
4.0"); browser.add("Internet
Explorer 5.0");
browser.add("Internet Explorer
6.0"); browser.add("Lynx 2.4");
browser.select(1);

\} add lists to window
add(os);
add(browser);

// register to receive action events
os.addActionListener(this);
browser.addActionListener(this);

}
public void actionPerformed(ActionEvent ae)
{ repaint();
}

// Display current selections.
public void paint(Graphics g)
{
int idx[];
msg = "Current OS: ";
idx = os.getSelectedIndexes();
for(int i=0; i<idx.length; i++)
msg += os.getItem(idx[i]) + " ";
g.drawString(msg, 6, 120);
msg = "Current Browser: ";
msg += browser.getSelectedItem();
g.drawString(msg, 6, 140);
}
}

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 159 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Scroll Bars
Scroll bars are used to select continuous values between a specified minimum and maximum.
Scroll bars may be oriented horizontally or vertically. Scrollbar class is useful to create
scrollbars that can be attached to a frame or text area. Scrollbars can be arranged vertically or
horizontally.

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 160 Dr.Venkateswarulu, Assoc Prof

\{ To create a scrollbar : Scrollbar sb = new Scrollbar (alignment, start, step, min, max);
alignment: Scrollbar.VERTICAL, Scrollbar.HORIZONTAL

start: starting value (e.g. 0)
step: step value (e.g. 30) // represents scrollbar length
min: minimum value (e.g. 0)
max: maximum value (e.g. 300)

· To know the location of a scrollbar: int n = sb.getValue ();
· To update scrollbar position to a new position: sb.setValue (int position);
· To get the maximum value of the scrollbar: int x = sb.getMaximum ();
· To get the minimum value of the scrollbar: int x = sb.getMinimum ();
· To get the alignment of the scrollbar: int x = getOrientation ();

This method return 0 if the scrollbar is aligned HORIZONTAL, 1 if aligned VERTICAL.
// Demonstrate scroll bars.

import java.awt.*;
import java.awt.event.*;
import java.applet.*;

/*
<applet code="SBDemo" width=300 height=200>
</applet>
*/
public class SBDemo extends Applet
implements AdjustmentListener, MouseMotionListener
{ String msg = "";
Scrollbar vertSB, horzSB;
public void init() {
int width = Integer.parseInt(getParameter("width")); int
height = Integer.parseInt(getParameter("height"));
vertSB = new Scrollbar(Scrollbar.VERTICAL, 0, 1, 0, height);
horzSB = new Scrollbar(Scrollbar.HORIZONTAL, 0, 1, 0, width);
add(vertSB);
add(horzSB);

// register to receive adjustment events
vertSB.addAdjustmentListener(this);
horzSB.addAdjustmentListener(this);
addMouseMotionListener(this);

}
public void adjustmentValueChanged(AdjustmentEvent ae) {
repaint();
}

// Update scroll bars to reflect mouse dragging.
public void mouseDragged(MouseEvent me) {
int x = me.getX();
int y = me.getY();
vertSB.setValue(y);

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 161 Dr.Venkateswarulu, Assoc Prof

horzSB.setValue(x);

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 162 Dr.Venkateswarulu, Assoc Prof

repaint();
}

// Necessary for MouseMotionListener
public void mouseMoved(MouseEvent me) {

}
// Display current value of scroll bars.

public void paint(Graphics g) {
msg = "Vertical: " + vertSB.getValue();
msg += ", Horizontal: " + horzSB.getValue();
g.drawString(msg, 6, 160);

\} show current mouse drag position
g.drawString("*", horzSB.getValue(),
vertSB.getValue());
}
}

Graphics
The AWT supports a rich assortment of graphics methods. All graphics are drawn relative to
a window.
Graphics class and is obtained in two ways:

\} It is passed to an applet when one of its various methods, such as paint() or update(),
is called.

\} It is returned by the getGraphics() method of Component.

Drawing Lines
Lines are drawn by means of the drawLine() method, shown here:

void drawLine(int startX, int startY, int endX, int endY)
drawLine() displays a line in the current drawing color that begins at startX,startY and ends
at endX,endY.
The following applet draws several lines:

// Draw lines import
java.awt.*; import
java.applet.*; /*

<applet code="Lines" width=300
height=200> </applet>
*/
public class Lines extends Applet
{ public void paint(Graphics g) {
g.drawLine(0, 0, 100, 100);
g.drawLine(0, 100, 100, 0);
g.drawLine(40, 25, 250, 180);
g.drawLine(75, 90, 400, 400);
g.drawLine(20, 150, 400, 40);
g.drawLine(5, 290, 80, 19);

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 163 Dr.Venkateswarulu, Assoc Prof

} }

Dept of CSE, NRCM 164 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Drawing Rectangles
The drawRect() and fillRect() methods display an outlined and filled rectangle, respectively.
They are shown here:

void drawRect(int top, int left, int width, int height)
void fillRect(int top, int left, int width, int height)

The upper-left corner of the rectangle is at top,left. The dimensions of the rectangle
are specified by width and height.
To draw a rounded rectangle, use drawRoundRect() or fillRoundRect(), both shown

here: void drawRoundRect(int top, int left, int width, int height,int xDiam, int yDiam)
void fillRoundRect(int top, int left, int width, int height, int xDiam, int yDiam)

// Draw rectangles
import java.awt.*;
import java.applet.*;
/*
<applet code="Rectangles" width=300
height=200> </applet>
*/
public class Rectangles extends Applet {
public void paint(Graphics g) {
g.drawRect(10, 10, 60, 50); g.fillRect(100,
10, 60, 50); g.drawRoundRect(190, 10,
60, 50, 15, 15); g.fillRoundRect(70, 90,
140, 100, 30, 40);
}
}

Drawing Ellipses and Circles
To draw an ellipse, use drawOval(). To fill an ellipse, use fillOval(). These methods
are shown here:

void drawOval(int top, int left, int width, int height)
void fillOval(int top, int left, int width, int height)

// Draw
Ellipses
import
java.awt.*
; import
java.apple
t.*; /*

<applet code="Ellipses" width=300
height=200> </applet>
*/
public class Ellipses extends Applet
{ public void paint(Graphics g) {
g.drawOval(10, 10, 50, 50);
g.fillOval(100, 10, 75, 50);g.drawOval(190, 10, 90, 30);g.fillOval(70, 90, 140, 100);} }

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 165 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Drawing Arcs
Arcs can be drawn with drawArc() and fillArc(), shown here:

void drawArc(int top, int left, int width, int height, int startAngle,int sweepAngle)
void fillArc(int top, int left, int width, int height, int startAngle,int sweepAngle)

The arc is bounded by the rectangle whose upper-left corner is specified by top,left and whose
width and height are specified by width and height. The arc is drawn from startAngle through
the angular distance specified by sweepAngle. Angles are specified in degrees.

Zero degrees is on the horizontal, at the three o’clock position. The arc is drawn
counterclockwise if sweepAngle is positive, and clockwise if sweepAngle is negative.
Therefore, to draw an arc from twelve o’clock to six o’clock, the start angle would be 90
and the sweep angle 180.

Drawing Polygons
It is possible to draw arbitrarily shaped figures using drawPolygon() and fillPolygon(
), shown here:

void drawPolygon(int x[], int y[], int numPoints)
void fillPolygon(int x[], int y[], int numPoints)

The polygon’s endpoints are specified by the coordinate pairs contained within the x and y
arrays. The number of points defined by x and y is specified by numPoints. There are
alternative forms of these methods in which the polygon is specified by a Polygon object.

The following applet draws several arcs:

//Draw Arcs

import

java.awt.*;

import

java.applet.*;

/*

<applet code="Arcs"

width=300 height=200>

</applet>

*/

public class Arcs extends Applet {

public void paint(Graphics g) {

g.drawArc(10, 40, 70, 70, 0, 75);

g.fillArc(100, 40, 70, 70, 0, 75);

g.drawArc(10, 100, 70, 80, 0, 175);

g.fillArc(100, 100, 70, 90, 0, 270);

g.drawArc(200, 80, 80, 80, 0, 180);

}

}

JAVA PROGRAMMING(CS2205PC)

Dept of CSE, NRCM 166 Dr.Venkateswarulu, Assoc Prof

The following

applet draws an

hourglass shape:

// Draw

Polyg

on

impo

rt

java.a

wt.*;

impo

rt

java.a

pplet.*;

/*

<applet code="HourGlass"

width=230 height=210>

</applet>

*/

public class HourGlass extends Applet {

public void paint(Graphics g) {

int xpoints[] = {30, 200, 30, 200, 30};

int ypoints[] = {30, 30, 200, 200, 30};

int num = 5; g.drawPolygon(xpoints,

ypoints, num);

}

}

Dept of CSE, NRCM 167 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

SWINGS


Swing is a set of classes that provides more powerful and flexible components than are
possible with the AWT. Swing is a GUI widget toolkit for Java. It is part of Oracle's Java
Foundation Classes (JFC) that is used to create window-based applications. It is built on
the top of AWT (Abstract Windowing Toolkit) API and entirely written in java.


In addition to the familiar components, such as buttons, check boxes, and labels, Swing
supplies several exciting additions, including tabbed panes, scroll panes, trees, and tables.
Even familiar components such as buttons have more capabilities in Swing. For example, a
button may have both an image and a text string associated with it. Also, the image can be
changed as the state of the button changes.


Unlike AWT components, Swing components are not implemented by platform specific
code. Instead, they are written entirely in Java and, therefore, are platform-independent.
The term lightweight is used to describe such elements.


The javax.swing package provides classes for java swing API such as JButton, JTextField, JTextArea,
JRadioButton, JCheckbox, JMenu, JColorChooser etc.

Differences between AWT and Swing

AWT Swing

AWT components are called Heavyweight

component.

Swings are called light weight component

because swing components sits on the top of

AWT components and do the work.

AWT components are platform dependent. Swing components are made in purely java and

they are platform independent.

AWT components require java.awt package. Swing components require javax.swing

package.

AWT is a thin layer of code on top of the OS. Swing is much larger. Swing also has very

much richer functionality.

AWT stands for Abstract windows toolkit. Swing is also called as JFC’s (Java Foundation

classes).

This feature is not supported in AWT. We can have different look and feel in Swing.

Dept of CSE, NRCM 168 Dr.Venkateswarulu, Assoc Prof

Using AWT, you have to implement a lot of

things yourself.

Swing has them built in.

This feature is not available in AWT. Swing has many advanced features like JTabel,

Jtabbed pane which is not available in AWT.

Also.Swing components are called

"lightweight" because they do not require a

native OS object to implement their

functionality. JDialog and JFrame are

heavyweight, because they do have a peer. So

components like JButton, JTextArea, etc., are

lightweight because they do not have an OS

peer.

The Swing component classes are:
Class Description
AbstractButton Abstract superclass for Swing buttons.
ButtonGroup Encapsulates a mutually exclusive set of buttons.
ImageIcon Encapsulates an icon.
JApplet The Swing version of Applet.
JButton The Swing push button class.
JCheckBox The Swing check box class.
JComboBox Encapsulates a combo box (combination of a drop-down list & text field).

JLabel The Swing version of a label.
JRadioButton The Swing version of a radio button.
JScrollPane Encapsulates a scrollable window.
JTabbedPane Encapsulates a tabbed window.
JTable Encapsulates a table-based control.
JTextField The Swing version of a text field.
JTree Encapsulates a tree-based control.

Dept of CSE, NRCM 169 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Hierarchy for Swing components:

Dept of CSE, NRCM 170 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

JApplet
Fundamental to Swing is the JApplet class, which extends Applet. Applets that use Swing must
be subclasses of JApplet. JApplet is rich with functionality that is not foundin Applet.

The content pane can be obtained via the method shown here:
Container getContentPane()

The add() method of Container can be used to add a component to a content pane. Its form is
shown here:
void add(comp)

Here, comp is the component to be added to the content pane.

JFrame
Create an object to JFrame: JFrame ob = new JFrame ("title"); (or)
Create a class as subclass to JFrame class: MyFrame extends JFrame
Create an object to that class : MyFrame ob = new MyFrame ();

Example: Write a program to create a frame by creating an object to JFrame
class. //A swing Frame
import javax.swing.*;
class MyFrame
{
public static void main (String agrs[])
{ JFrame jf = new JFrame ("My Swing Frame...");
jf.setSize (400,200);
jf.setVisible (true);
jf.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
}
}

Note: To close the frame, we can take the help of getDefaultCloseOperation () method of
JFrame class, as shown here: getDefaultCloseOperation (constant);

where the constant can be any one of the following:

• JFrame.EXIT_ON_CLOSE: This closes the application upon clicking on close button.

• JFrame.DISPOSE_ON_CLOSE: This disposes the present frame which is visible on
the screen. The JVM may also terminate.

• JFrame.DO_NOTHING_ON_CLOSE: This will not perform any operation upon clicking
on close button.

• JFrame.HIDE_ON_CLOSE: This hides the frame upon clicking on close button.

Window Panes: In swings the components are attached to the window panes only. A window
pane represents a free area of a window where some text or components can be displayed. For
example, we can create a frame using JFrame class in javax.swing which contains a free area
inside it, this free area is called 'window pane'. Four types of window panes are available in
javax.swing package.

Dept of CSE, NRCM 171 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

Glass Pane: This is the first pane and is very close to the monitors screen. Any components to
be displayed in the foreground are attached to this glass pane. To reach this glass pane, we use
getGlassPane () method of JFrame class.

Root Pane: This pane is below the glass pane. Any components to be displayed in the
background are displayed in this pane. Root pane and glass pane are used in animations also.
For example, suppose we want to display a flying aeroplane in the sky. The aeroplane can be
displayed as a .gif or .jpg file in the glass pane where as the blue sky can be displayed in the root
pane in the background. To reach this root pane, we use getRootPane () method of JFrame class.

Layered Pane: This pane lies below the root pane. When we want to take several components
as a group, we attach them in the layered pane. We can reach this pane by calling
getLayeredPane () method of JFrame class.

Content Pane: This is the bottom most pane of all. Individual components are attached to this
pane. To reach this pane, we can call getContentPane () method of JFrame class.

Displaying Text in the Frame:
paintComponent (Graphics g) method of JPanel class is used to paint the portion of a component
in swing. We should override this method in our class. In the following example, we are writing
our class MyPanel as a subclass to JPanel and override the painComponent () method.

Write a program to display text in the frame
import javax.swing.*;
import java.awt.*;
class MyPanel extends JPanel
{ public void paintComponent (Graphics g)

{ super.paintComponent (g); //call JPanel’s method
setBackground (Color.red);
g.setColor (Color.white);
g.setFont (new Font("Courier New",Font.BOLD,30));

Dept of CSE, NRCM 172 Dr.Venkateswarulu, Assoc Prof

g.drawString ("Hello Readers!", 50, 100);
}
}
class FrameDemo extends JFrame
{ FrameDemo ()
{
Container c = getContentPane ();
MyPanel mp = new MyPanel ();
c.add (mp);
setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE);
}
public static void main(String args[])
{ FrameDemo ob = new FrameDemo ();
ob.setSize (600, 200);
ob.setVisible (true);
}
}

Dept of CSE, NRCM 173 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

TEXT FIELDS
The Swing text field is encapsulated by the JTextComponent class, which extends JComponent.
It provides functionality that is common to Swing text components. One of its subclasses is
JTextField, which allows you to edit one line of text. Some of its constructors are shown here:

JTextField()
JTextField(int cols)
JTextField(String s, int cols)
JTextField(String s)

import java.awt.*;
import javax.swing.*;
/*
<applet code="JTextFieldDemo" width=300 height=50>

Dept of CSE, NRCM 174 Dr.Venkateswarulu, Assoc Prof

</applet>
*/
public class JTextFieldDemo extends JApplet {
JTextField jtf;

public void init()
{
// Get content pane
Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());

// Add text field to content
pane jtf = new
JTextField(15);
contentPane.add(jtf);

}
}

BUTTONS
Swing buttons provide features that are not found in the Button class defined by the AWT. For
example, you can associate an icon with a Swing button. Swing buttons are subclasses of the
AbstractButton class, which extends JComponent. AbstractButton contains many methods that
allow you to control the behavior of buttons, check boxes, and radio buttons.

The JButton Class
The JButton class provides the functionality of a push button. JButton allows an icon, a string, or
both to be associated with the push button. Some of its constructors are shown here:

· To create a JButton with text: JButton b = new JButton (“OK”);
· To create a JButton with image: JButton b = new JButton (ImageIcon ii);

· To create a JButton with text & image: JButton b = new JButton (“OK”, ImageIcon ii);

It is possible to create components in swing with images on it. The image is specified by
ImageIcon class object.

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JButtonDemo" width=250 height=300>
</applet>
*/
public class JButtonDemo extends JApplet implements ActionListener {
JTextField jtf;
public void init() {
// Get content pane
Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
// Add buttons to content pane

Dept of CSE, NRCM 175 Dr.Venkateswarulu, Assoc Prof

ImageIcon france = new ImageIcon("france.gif");
JButton jb = new JButton(france);
jb.setActionCommand("France");
jb.addActionListener(this); contentPane.add(jb);

ImageIcon germany = new ImageIcon("germany.gif");
jb = new JButton(germany);
jb.setActionCommand("Germany");
jb.addActionListener(this);
contentPane.add(jb);
ImageIcon italy = new ImageIcon("italy.gif");
jb = new JButton(italy);
jb.setActionCommand("Italy");
jb.addActionListener(this);
contentPane.add(jb);
ImageIcon japan = new ImageIcon("japan.gif");
jb = new JButton(japan);
jb.setActionCommand("Japan");
jb.addActionListener(this);
contentPane.add(jb);

// Add text field to
content pane jtf = new
JTextField(15);
contentPane.add(jtf);

}
public void actionPerformed(ActionEvent ae)
{ jtf.setText(ae.getActionCommand());
}
}

Dept of CSE, NRCM 176 Dr.Venkateswarulu, Assoc Prof

 JAVA PROGRAMMING(CS2205PC)

CHECK BOXES
The JCheckBox class, which provides the functionality of a check box, is a concrete
implementation of AbstractButton. Its immediate superclass is JToggleButton, which provides
support for two-state buttons. Some of its constructors are shown here:

JCheckBox(Icon i)
JCheckBox(Icon i, boolean state)
JCheckBox(String s)
JCheckBox(String s, boolean state)
JCheckBox(String s, Icon i)
JCheckBox(String s, Icon i, boolean state)

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JCheckBoxDemo" width=400 height=50>
</applet>
*/

Prepblic class JCheckBoxDemo extends JApplet implements ItemListener { JTextField jtf;
public void init()
{
// Get content pane
Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
// Create icons
ImageIcon normal = new ImageIcon("normal.gif");
ImageIcon rollover = new ImageIcon("rollover.gif");
ImageIcon selected = new ImageIcon("selected.gif");
// Add check boxes to the content pane
JCheckBox cb = new JCheckBox("C", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this); contentPane.add(cb);

cb = new JCheckBox("C++",
normal); cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);
cb = new JCheckBox("Java", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);

Dept of CSE, NRCM 177 Dr.Venkateswarulu, Assoc Prof

cb.addItemListener(this);
contentPane.add(cb);
cb = new JCheckBox("Perl", normal);
cb.setRolloverIcon(rollover);
cb.setSelectedIcon(selected);
cb.addItemListener(this);
contentPane.add(cb);
// Add text field to the content pane
jtf = new JTextField(15);
contentPane.add(jtf);
}
public void itemStateChanged(ItemEvent ie) {
JCheckBox cb = (JCheckBox)ie.getItem();
jtf.setText(cb.getText());
}
}

RADIO BUTTONS
Radio buttons are supported by the JRadioButton class, which is a concrete implementation of
AbstractButton. Its immediate superclass is JToggleButton, which provides support for two-
state buttons. Some of its constructors are shown here:

JRadioButton(Icon i)
JRadioButton(Icon i, boolean state)
JRadioButton(String s)
JRadioButton(String s, boolean state)
JRadioButton(String s, Icon i)
JRadioButton(String s, Icon i, boolean state)

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
/*
<applet code="JRadioButtonDemo" width=300 height=50>
</applet>
*/
public class JRadioButtonDemo extends JApplet implements ActionListener {
JTextField tf;
public void init() {

Dept of CSE, NRCM 178 Dr.Venkateswarulu, Assoc Prof

// Get content pane
Container contentPane = getContentPane();
contentPane.setLayout(new FlowLayout());
1. Add radio buttons to content pane
JRadioButton b1 = new JRadioButton("A");
b1.addActionListener(this);
contentPane.add(b1);
JRadioButton b2 = new JRadioButton("B");
b2.addActionListener(this);
contentPane.add(b2);
JRadioButton b3 = new JRadioButton("C");
b3.addActionListener(this);
contentPane.add(b3);
2. Define a button group
ButtonGroup bg = new ButtonGroup();
bg.add(b1);
bg.add(b2);
bg.add(b3);
// Create a text field and add it
// to the content pane
tf = new JTextField(5);
contentPane.add(tf);
}
public void actionPerformed(ActionEvent ae) {
tf.setText(ae.getActionCommand());
}
}

Dept of CSE, NRCM 179 Dr.Venkateswarulu, Assoc Prof

179
 JAVA PROGRAMMING(CS2205PC)

Limitations of AWT:
The AWT defines a basic set of controls, windows, and dialog boxes that support a usable, but limited
graphical interface. One reason for the limited nature of the AWT is that it translates its various visual
components into their corresponding, platform-specific equivalents or peers. This means that the look and
feel of a component is defined by the platform, not by java. Because the AWT components use native code
resources, they are referred to as heavy weight.

The use of native peers led to several problems.

First, because of variations between operating systems, a component might look, or even act, differently
on different platforms. This variability threatened java’s philosophy: write once, run anywhere.

Second, the look and feel of each component was fixed and could not be changed. Third, the use of
heavyweight components caused some frustrating restrictions. Due to these limitations Swing came and
was integrated to java. Swing is built on the AWT. Two key Swing features are: Swing components are
light weight, Swing supports a pluggable look and feel.

	Need for OOP paradigm
	Object Oriented Paradigm – Key Features
	• Encapsulation
	• Inheritance

	A Way of viewing World- Agents
	Responsibility
	Messages
	Methods
	Naming a Method

	Overloading Methods
	Classes
	Creating a class:

	Class Variables – Static Fields
	Class Methods – Static Methods
	Encapsulation:
	Polymorphism:
	Inheritance or class Hierarchies:
	Method Binding:
	Abstraction:
	Overriding:
	Exceptions:
	Object-Oriented Programming – Summary of Key Terms
	Advantage of OOPs over Procedure-oriented programming language

	Java Basics:
	History of JAVA
	Object-Oriented features are influenced by C++.
	 Applications
	JDK (java development tool kit):
	JDK provides tools in the bin directory of JDK and they are as follows:
	The way these tools are applied to build and run application programs is as follows:
	JVM (JAVA VIRTUAL MACHINE)
	JAVA RUNTIME ENVIRONMENT
	JIT (JUST – IN – TIME)
	Steps to execute a java prg:
	Steps to compile a java prg:

	IN THE JAVA PROGRAM:

	Java‟s Byte code:
	Differences of JAVA from C++
	Java Buzzwords or Features of Java:
	9. Architecture-Neutral
	10. Interpreted and High Performance

	Key words:
	Java Is a Strongly Typed Language
	int n=12.345;

	DATA TYPES:
	These can be put in Four types:
	Examples of double and char
	Examples of boolean
	Variables:
	Output:

	Constant identifiers:
	The Scope and Lifetime of Variables:
	To understand the effect of nested scopes, consider the following program:

	Local variables:
	Example: Scope of local variables:
	Non-overlapping (or disjoint) scopes:

	Parameter variables:
	Life and scope of parameter variable:

	Class variables:
	Instance variables:
	Life and scope of Instance variables:

	Literals
	Integer Literals
	Decimal literals
	Octal literals
	Hexadecimal literals:
	Example Program:
	Floating-Point Literals
	Boolean Literals
	Character Literals
	String Literals

	Java Naming conventions
	Advantage of naming conventions in java

	OPERATORS:
	Binary Left Shift Operator: << (left shift)
	Binary Right Shift Operator: >> (right shift)
	Shift right zero fill operator : >>> (zero fill right shift)
	Logical AND operator: && (logical and)
	Logical OR Operator: || (logical or)
	Logical NOT Operator: ! (logical not)
	Op: James

	Expressions:
	Statements
	Type Conversion and Casting:
	Java„s Automatic Conversions
	Casting Incompatible Types
	It has this general form:
	Example:
	Example Program: Conversion.java
	The Type Promotion Rules
	Ex:
	Let‟s look closely at the type promotions that occur in this line from the program:

	Control Statements or Control Flow:
	IF Statement
	The general form of the if statement:
	IF –ELSE Statement
	The general form of the if statement:
	Nested ifs
	The if-else-if Ladder
	Example: // Demonstrate if-else-if statements.
	Output:

	The switch Statement
	Program: displays the name of the month, based on the value of month, using the switch statement.

	Iteration Statements
	Output:"August"
	do-while statement
	Ex Program:
	The for Statement
	When using the for statement, we need to remember that
	// Without using the comma.
	Output:
	For-Each Version of the for Loop
	Output:
	The general form of the for-each version of the for is shown here:
	//Using for loop
	//Using for-each loop
	// Use a for-each style for on a 1D array.
	Output:
	// Use for-each style for on a 2D array
	Output:
	Nested Loops
	Ex: Nested.java
	Output:
	Unconditional Control Statements
	1. break:
	// Using break to exit a loop.
	2. continue
	// Using continue to skip the current iteration
	3. goto:
	The syntax for the goto statement in java is:
	Example:
	Output:
	4. return:

	Classes and Objects:
	Syntax to declare a class:

	OBJECTS:
	New keyword in Java
	Declaring Objects

	Object and Class Example: main within class
	Student.java

	Object and Class Example: main outside class
	TestStudent1.java
	Output:

	Three Ways to initialize object
	1) Object and Class Example: Initialization through reference
	Output:
	Output:
	2) Object and Class Example: Initialization through method
	TestStudent4.java
	3) Object and Class Example: Initialization through constructor

	Arrays:
	One-Dimensional Arrays
	int month [];
	array-var = new type[size];
	Another way to declare an array in single step is
	Ex: int month = new int[12];
	Multidimensional Arrays
	Example Program:
	Output:
	Example Program:
	Output:
	Alternative Array Declaration Syntax
	type[] var-name;

	Constructors:
	1. Default constructor:
	Example:

	Java Copy Constructor
	There are several motivations for modularizing a program with methods.
	Procedure:
	Naming a Method
	Parameter Passing:
	Call by Value and Call by Reference in Java
	Example of call by value in java
	Output:

	static : (constant / fixed)
	static data members :
	static methods :
	static block:
	4. It can use only static variables & call only static methods.
	// Demonstrate static variables, methods, and blocks: UseStatic.java
	Syntax:
	Output:
	To call a static method from outside its class, use following general form:
	Ex: StaticByName.java

	Concrete class: (real / actual)
	Output:

	Access Specifiers:
	private:
	Ex: class A
	Output: compile time error
	Ex: class A{
	} } Output: compile time error

	public:
	Output:

	protected:

	this Keyword:
	private void formatFullName()
	this.fullName = String.format("%s %s", this.firstName, this.lastName);
	Example 1:
	Example 2:
	Op: 20

	Garbage Collection
	Advantage of Garbage Collection

	How can an object be unreferenced?
	Object can be unreferenced using the following ways:

	gc() method
	Simple Example of garbage collection in java public class TestGarbage1{

	Method Overloading in Java
	Different ways to overload the method
	Note: In java, Method Overloading is not possible by changing the return type of the method.

	Constructor Overloading in Java
	Example of Constructor Overloading

	Recursion:
	Output:
	A method that calls itself is said to be recursive.

	BufferedReader class (or) Console Input and Output:
	BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
	Example Program: // Use a BufferedReader to read characters from the console.
	Reading Strings

	Java Scanner class
	There is a list of commonly used Scanner class methods:
	Output:

	Strings:
	What is String in java
	There are two ways to create String object:

	1) String Literal
	2) By new keyword
	Java String Example
	Difference between StringBuffer and StringBuilder

	Immutable String in Java

	String Handling Methods:
	String compare by compareTo() method
	String Concatenation by + (string concatenation) operator
	For example concat():
	Substring in Java
	In case of string:
	Let's understand the startIndex and endIndex by the code given below.
	Java String toUpperCase() and toLowerCase() method
	Java String trim() method
	Java String startsWith() and endsWith() method
	Java String charAt() method
	Output:
	Java String length() method
	Output:
	Java String replace() method

	StringTokenizer in Java
	Output:

	Java Inner Class
	Advantage of java inner classes
	Java Member inner class example
	Output:
	Internal working of Java member inner class
	"Outer$Inner".
	Single Level Inheritance:
	Multi Level Inheritance:
	Hierarchical Inheritance:
	Multiple inheritance:
	Example for Single Inheritance:
	Output:
	Example for multilevel inheritance:
	Problems:

	Access Specifers:
	Super Keyword:
	Syntax:
	The usage has the following general form:
	Example:
	Final Keyword: (last / concluding)
	Using final with inheritance:
	final data members:
	Using final to prevent overriding:
	Using final to prevent inheritance:
	Example:

	Polymorphism
	Write a program to illustrate static polymorphism.
	Output: Parent method
	Upcasting
	Ways to achieve Abstaction
	Example abstract class
	Abstract method
	abstract method.
	Example abstract method
	Example of abstract class that has abstract method
	Abstract class having constructor, data member, methods etc.

	Interface in Java
	Simple example of Java interface
	Interface inheritance
	 We cannot create an object to an interface.
	 An interface cannot implement another interface.
	 A class can implement multiple interfaces.
	This is the general form of an interface:
	Implementing Interfaces
	Accessing Implementations through Interface References:
	The following example calls the callback() method via an interface reference variable:
	Now, try the following class:

	EXTENDING INTERFACES:
	Difference between abstract class and interface
	Example of abstract class and interface in Java
	interface A
	abstract class B implements A
	class M extends B
	Output:

	Packages in JAVA:
	Advantage of Java Package
	Defining a Package:
	Creating a Package:
	How to compile java package
	How to run java package program
	1. import package.*;
	3. fully qualified name.
	Example of package that import the packagename.*
	Example of package by import fully qualified name
	For example, consider the following package specification:
	Example:
	java bal.AccountBalance
	This is the general form of the import statement:
	Ex - This code fragment shows both forms in use:
	Balance.java
	Java API Packages:
	O/P; Kalpana: $99.88
	User-Defined packages:
	Packages Examples:
	Compiling the above program:
	Output:
	Compiling the above program:
	UNDERSTANDING CLASSPATH:
	Program 5: Program to show how to create a subpackage in a package.
	ACCESSING A PACKAGES:
	Another Simple example for Packages:
	Compilation
	Run
	Op:

	Exceptions:
	Errors and Exception Handling
	Exception:
	Exception Handler:
	Advantage of Exception Handling
	Hierarchy of Java Exception classes
	IOException:
	1) Checked Exception
	2) Unchecked Exception
	3) Error

	Differences between Checked and Unchecked Exceptions
	Built-in Exception classes:

	Common scenarios where exceptions may occur
	1) Scenario where ArithmeticException occurs
	2) Scenario where NullPointerException occurs
	3) Scenario where NumberFormatException occurs
	4) Scenario where ArrayIndexOutOfBoundsException occurs

	Exception Handling Mechanism in Java:
	Try, catch, throw, throws and finally
	Try block:
	Catch:
	Throw:
	Throws:
	Finally:
	Example:

	User-defined exception (or) Custom Exception (or) Own Exception:
	Example:
	else
	try

	Multithreading
	What is the difference between thread based and processor-based Multitasking
	Benefits of Multithreading
	Definition: Thread is a tiny program running continuously. It is sometimes called as light- weight process.

	The main thread
	Creating a thread
	Implementing the Runnable Interface
	t.start();
	Output :
	Output :
	Q: Can we start a thread twice?

	Example:
	th.stop();
	Use of stop() Method

	1. sleep()
	2. suspend()
	3. wait()
	Thread Priorities
	Thread Priorities:
	Example:
	Output:
	EX2:

	Daemon Thread:
	Synchronization
	Problem without using Synchronization

	Inter thread Communication
	Example:

	APPLETS:
	Advantages:
	Restrictions of Applets of Applets Vs Applications
	Restrictions

	LIFE CYCLE OF AN APPLET
	Initialization:
	

	
	Dead/Destroyed:
	
	There are two ways to run an applet.
	Example Program:
	TYPES OF APPLETS
	PASSING PARAMETERS TO AN APPLET
	Ex1: Write a program to pass employ name and id number to an applet.
	Ex2: Write a program to pass two numbers and pass result to an applet.

	EVENT HANDLING
	The Delegation Event Model
	
	
	

	EVENTS
	EVENT SOURCES
	Here is the general form:

	EVENT LISTENERS
	EVENT CLASSES
	It’s one constructor is shown here:
	The ContainerEvent Class
	The MouseEvent Class
	The WindowEvent Class
	EVENT LISTENER INTERFACES

	The ItemListener Interface
	The KeyListener Interface
	The general forms of these methods are shown here:

	The MouseListener Interface
	The general forms of these methods are shown here:

	The MouseMotionListener Interface
	Their general forms are shown here:

	The TextListener Interface

	Handling Keyboard Events
	Adapter Classes
	Stream
	Byte Streams
	Example
	Now let's have a file input.txt with the following content:

	Character Streams
	Example

	Reading and Writing Files Text input/output,
	Java FileOutputStream class
	DataInputStream dis=new DataInputStream(System.in);

	
	Creating a Text file:
	Example: Write a program to read data from myfile.txt using FileInputStream and display it on monitor.
	GUI PROGRAMMING WITH JAVA
	ABSTRACT WINDOW TOOLKIT (AWT)
	AWT Classes
	Class Description

	Control Fundamentals
	User interaction with the program is of two types:

	Java AWT Class Hierarchy
	Container
	Window
	Panel
	Frame
	Listeners and Listener Methods:
	Layout Managers
	LayoutManager at work
	setLayout (new BorderLayout());
	Flow Layout
	Grid Layout
	Border Layout
	Compile: javac Border.java

	Java AWT Example
	Simple example of AWT by inheritance import java.awt.*;
	Simple example of AWT by association import java.awt.*;

	AWT controls
	Labels:
	Buttons:
	Check Boxes:
	TextField:
	TextArea:
	CheckboxGroup
	Choice Controls
	Lists
	Scroll Bars
	Graphics
	Drawing Lines
	Drawing Rectangles
	Drawing Ellipses and Circles
	Drawing Arcs
	Drawing Polygons

	SWINGS
	
	
	
	Hierarchy for Swing components:
	JFrame
	Example: Write a program to create a frame by creating an object to JFrame class. //A swing Frame
	Displaying Text in the Frame:
	Limitations of AWT:

